Метаболическая терапия в кардиологии


Комментарии

Опубликовано в журнале:
« КАРДИОЛОГИЯ (KARDIOLOGIIA) » 2016 г. В.В. РЕЗВАН, И.С. ВАСИЛЬЕВА
Кафедра госпитальной терапии №2 ГБОУ ВПО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ, Москва

Развивающийся на ранних этапах ишемического каскада при ряде заболеваний и патологических состояний дисбаланс энергетического метаболизма негативно сказывается на функциональном состоянии и морфологии клеточных структур, приводя к апоптозу и гибели клеток. Основными факторами, повреждающими клеточные мембраны, являются свободные радикалы и активные формы кислорода, имеющие высокое сродство к липидам и фосфолипидам клеточных мембран [1—3].

Несмотря на многолетний опыт использования, схемы назначения антигипоксических и антиоксидантных препаратов остаются эмпирическими, не имеют убедительного объяснения, которое базировалось бы на данных научных исследований. С учетом этого к перспективному направлению фармакотерапии нарушений, развивающихся при описанных выше состояниях, следует отнести применение веществ, защищающих биологические мембраны от повреждения (препараты с антиоксидантной активностью), и веществ, повышающих энергетический потенциал клеток (антигипоксанты). Важнейшей проблемой современной кардиологии является разработка средств защиты миокарда за счет активации различных метаболических процессов [3—6].


Метаболическая коррекция с целью цитопротекции при сердечно-сосудистых заболеваниях (ССЗ) является наиболее аргументированным подходом с точки зрения патофизиологии. В международных рекомендациях имеются указания на доказательную базу целесообразности включения ряда метаболических цитопротекторов в программы лечения больных ишемической болезнью сердца с хронической сердечной недостаточностью (ХСН).

В статье приводятся анализ данных литературы об эффективности метаболической терапии ССЗ с использованием таурина и результаты собственных исследований авторов. Патогенетическое обоснование метаболической терапии с использованием таурина. Таурин представляет собой 2-аминоэтансульфоновую кислоту (H2N-CH2-CH2-SO3H), которая была открыта в 1827 г. Леопольдом Гмелиным в качестве основного элемента бычьей желчи. Таурин содержится во всех жизненно важных органах человека (мозг, сердце, печень, почки, поджелудочная железа, сетчатка глаза и др.), входит в состав материнского молока и плазмы крови [7, 8].


Вследствие важной роли таурина в физиологических процессах в организме человека дефицит этого вещества ассоциирован с развитием различных патологических процессов [7]. Показано, что длительный дефицит употребления пищевых продуктов, содержащих таурин, связан с развитием дегенерации сетчатки, задержкой роста и развития организма, с проявлениями ряда ССЗ, аномалий развития центральной нервной системы (ЦНС), ослаблением иммунитета и неспецифической резистентности организма и рядом заболеваний печени. Развитие большинства этих расстройств может эффективно предупреждаться или подвергаться регрессу при приеме таурина [8—10].

Анализ данных литературы свидетельствует о наличии целого ряда эффектов, описанных в фармакологических, физиологических и биохимических исследованиях при изучении этого вещества. Отмечено отсутствие токсичности этой аминокислоты, что позволяет считать перспективным использование данного природного соединения при разработке лекарственных средств для лечения ряда заболеваний, в том числе болезней сердца и сосудов.

К настоящему времени показано участие таурина в ряде физиологических процессов, в частности, показано его влияние на сократительную активность сердечной мышцы [8], обмен липидов в печени [10], импульсную активность нейронов разных зон головного мозга [11], иммунологическую память [12], осмотическое равновесие клеток [13].

По своей химической природе таурин также способен действовать как поглотитель свободных радикалов и антиоксидант [9]. Кроме того, тауриновые хлорамины, которые формируются в ходе химического взаимодействия таурина с высокотоксичной хлорноватистой кислотой, служат в качестве внутриклеточных сигнальных молекул, способных снижать экспрессию провоспалительных цитокинов, повышая при этом экспрессию эндогенной NO-синтазы (eNOS) [14].


Внутриклеточный таурин реализует электростатические взаимодействия с полярными группами фосфолипидов в составе клеточных мембран, что может влиять на такие свойства мембран, как проницаемость и текучесть, что в свою очередь влияет на подверженность структурных и функциональных мембраносвязанных белков различным ковалентным модификациям и модулирующим воздействиям [15, 16].

Активная тауриновая транспортная система является стереоспецифичной и подавляется в присутствии прочих β-аминокислот и некоторых других веществ, например, β-аланина, гуанидинэтансульфоната и γ-аминомасляной кислоты. Сделано предположение, что этот транспортер помогает поддерживать определенную внутриклеточную концентрацию таурина. Распределение таурина может значительно различаться в зависимости от типа клеток и тканей, при этом высокие уровни данной аминокислоты выявляются в желчи, тканях кишечника, сердца и почек, в сетчатке и лейкоцитах [15, 17].

Метаболические нарушения при инфаркте миокарда и возможность их коррекции. К настоящему времени описан лечебный эффект этого вещества при ряде ССЗ.

Мы изучили клиническую эффективность и безопасность таурина при лечении больных постинфарктным кардиосклерозом (ПИКС).


исследование были включены 95 больных с ПИКС и со стенокардией напряжения II и III функционального класса (ФК) [18]. Пациенты были распределены случайным образом на 2 группы: основную группу составили 48 пациентов (29 мужчин и 19 женщин, средний возраст 65,8±7,2 года), которым к стандартной терапии добавлен таурин (дибикор, «ПИК-ФАРМА» Россия, 750 мг/сут); в группу сравнения вошли 47 пациентов (30 мужчин и 17 женщин, средний возраст 63,6±6,9 года), которые получали стандартную терапию и плацебо. Продолжительность лечения составила 3 мес.

Для оценки стойкости терапевтического эффекта лечения измеряли показатели спустя 3 мес после окончания лечения. Было установлено, что клиническая эффективность таурина у больных ПИКС при ежедневного приеме 750 мг в течение 3 мес подтверждается более значимыми изменениями по сравнению с плацебо показателей субъективного статуса: уменьшением выраженности утомляемости в 2 раза, снижением интенсивности жалоб на сердцебиение на 72,3%, уменьшением выраженности одышки на 30% и выраженности болей в области сердца на 50% по сравнению с исходным уровнем [18].

У больных, в курсе лечения которых был использован таурин, отмечены повышение толерантности к физической нагрузке, нормализация ритма сердца (уменьшение количества желудочковых экстрасистол на 45%, уменьшение частоты наджелудочковых нарушений ритма сердца на 57%) и статистически значимое увеличение фракции выброса по данным эхокардиографии.


У пациентов с признаками ПИКС прием таурина в течение 3 мес способствует повышению качества жизни, что проявляется значимым повышением показателей большинства шкал Сиэтлского опросника.

Следует отметить, что выявленные изменения клинических и инструментальных показателей у больных ПИКС сохраняются в течение 3 мес после окончания приема таурина [18]. A. Venturini и соавт. полагают, что кардиопротекторная роль таурина связана с его способностью влиять на ток Ca2+. При ишемии анаэробный метаболизм приводит к увеличению продукции лактата и снижению внутриклеточного рН. В свою очередь уменьшение рН инициирует обмен Na+/H+, повышая внутриклеточную концентрацию Na+. Реперфузия, следующая за продолжительной ишемией, может привести к необратимым изменениям, вызван- ным накоплением Ca2+ за счет обмена Na+/Ca2+и образования активных форм кислорода (АФК). При этом таурин защищает миокард от повреждений за счет предотвращения избыточного накопления Ca2+ вследствие ингибиции обмена Na Ca2+/Ca2+ [19].

В постинфарктном периоде таурин помогает стабилизировать электрическую возбудимость мембран, модулируя концентрацию Ca2+ и одновременно снижая агрегационную способность тромбоцитов. По данным J. Das и соавт., кардиопротекторная роль таурина реализуется благодаря его антиоксидантным эффектам [20].

Метаболические нарушения при атеросклерозе. В настоящее время исследователи полагают, что в отношении профилактики и лечения ССЗ большое значение имеет действия препарата на липидный обмен. Так, T. Yanagita и соавт. приводят данные о его гипохолестеринемических свойствах. Показано, что таурин усиливает биотрансформацию холестерина в желчные кислоты, в свою очередь, увеличенное количество желчных кислот может усилить выведение холестерина из организма [21].


Влияние таурина на уровень холестерина в сыворотке крови ассоциировано с изменением активности 7-α-гидроксилазы и 3-гидрокси-3-метилглутарил-КоА-редуктазы в печени. В экспериментах установлено, что таурин тормозит секрецию одного из основных индивидуальных факторов риска атеросклероза и ИБС — аполипопротеина В, незаменимого структурного компонента липопротеинов низкой плотности и липопротеинов очень низкой плотности, необходимого для внутриклеточной сборки и секреции этих липопротеинов.

M.J. Choi и соавт. представили убедительные данные, подтверждающие антиатерогенное действие таурина на организм, которое проявляется помимо конъюгации с желчными кислотами способностью стимулировать синтез оксида азота (NO), а также улучшением регуляции соотношения липидов крови и состояния эндотелия сосудов посредством влияния на метаболизм и активность макрофагов [10].

По мнению T. Ito, J. Azuma, прием таурина предотвращает возникновение дисфункции эндотелия — начального события формирования атеросклеротического поражения за счет улучшении функции моноцитов [22]. G. Ulrich-Merzenich и соавт. указывают, что развитие дисфункции эндотелия, вызванной высоким уровнем глюкозы и окисленными липопротеидами низкой плотности, может предотвращаться при приеме таурина за счет снижения регуляции апоптоза и молекул адгезии [23].


Метаболические нарушения при ХСН и их коррекции при использовании таурина. Показана эффективность применения таурина у больных с ХСН. В исследовании M. Sinha и соавт. показано, что благодаря воздействию на продолжительность потенциала действия посредством модуляции внутриклеточного содержания калия, таурин проявляет инотропное действие на миокард. Авторы полагают, что эффект таурина при ХСН обусловлен следующими механизмами: усилением выведения натрия; секрецией натрий- уретического фактора и вазопрессина; повышением активности кальциевых потоков; усилением инотропной и адренергической активности за счет влияния на уровень цАМФ [24].

В исследовании И.Г. Гордеева и соавт. установлено, что применение таурина у пациентов с ХСН II ФК по классификации NYHA на фоне ПИКС приводит к достоверному уменьшению дисперсии интервала QT по сравнению с таковым у пациентов контрольной группы и оказывает положительное воздействие на динамику данного показателя у пациентов с ХСН III ФК по классификации NYHA, получавших стандартную терапию [25].

В работе М.Е. Стаценко и соавт. обследовали 60 больных мужчин и женщин в раннем постинфарктном периоде с ХСН II—III ФК по классификации NYHA и сопутствующим сахарным диабетом 2-го типа (СД-2).


циенты были рандомизированы в 2 группы по 30 человек: 1-я — получавшие базисную терапию сердечной недостаточности и базисную антидиабетическую терапию, и 2-я группа — принимавшие дополнительно к базисному лечению таурин в дозе 500 мг 2 раза в сутки. Была проведена оценка влияния 16-недельной терапии таурином на ФК сердечной недостаточности, структурно-функциональные параметры сердца, углеводный, липидный обмены, показатели вариабельности ритма сердца и микроциркуляцию, эластические свойства магистральных сосудов у больных с ХСН и сопутствующим СД-2 [26]. Авторами показано, что включение таурина в состав базисной терапии ХСН и СД-2 статистически значимо увеличивает фракцию выброса ЛЖ, снижает уровни глюкозы, гликированного гемоглобина (HbAlc).

Отмечается снижение инсулинорезистентности наряду со снижением концентраций липопротеидов низкой плотности и триглицеридов. Установлено, что выявленные изменения способствуют нормализации деятельности вегетативной нервной системы, при этом уменьшается доля больных с гиперсимпатикотонией, что способствует клинически значимому снижению жесткости стенки магистральных артерий, достоверно улучшая ее функцию эндотелия. Авторы делают заключение о целесообразности включения таурина в состав базисной терапии ХСН и СД-2 в раннем постинфарктном периоде [26].

Метаболические нарушения при СД, их влияние на сердечно-сосудистую систему и роль таурина. В течение последних лет в России проведен ряд исследований, в которых показано, что включение в комплексную терапию больных с СД-2 и метаболическим синдромом препарата дибикор, содержащего таурин, приводит к достоверному снижению уровней базальной гликемии, HbAlc и индекса инсулинорезистентности НОМА. У ряда больных применение дибикора позволяет снизить дозу пероральных сахароснижающих препаратов [27, 28].


В открытом сравнительном исследовании, проведенном Т.И. Севериной и соавт., оценивалась эффективность применения таурина при лечении больных СД-2 на фоне базисной терапии. Методом рандомизации сформированы контрольная группа (n=20) и группа лечения таурином (n=20). Пациенты обеих групп получали метформин и препараты сульфонилмочевины. Через 3 мес после начала лечения выявлены статистически значимые позитивные изменения метаболических показателей углеводного, липидного и пуринового обмена в группе, получавшей таурин. Изменения в контрольной группе были статистически незначимыми [29].

С целью изучения влияния таурина на состояние углеводного и липидного обмена, состояние сердечно-сосудистой системы, клинический статус и показатели качества жизни пациентов с СД-2, Г.И. Нечаевой и соавт. были обследованы 195 больных. В плацебо-контролируемое двойное слепое исследование были включены 80 пациентов с установленным диагнозом СД-2 с ранее диагностированным СД-2 в возрасте 45—60 лет [30].

Авторами показано, что применение дибикора на фоне приема сахароснижающих, гиполипидемических, гипотензивных.


а жизни пациентов при хорошей переносимости препарата [30, 31].

В работе Y. Yamori и соавт. установлено, что прием таурина оказывает адреналинсохраняющее действие на надпочечники при стрессе, в среднем на 30% подавляет подъем уровня глюкозы в крови [32].

В работе Т.А. Зыковой и соавт. представлены результаты исследования использования таурина у женщин в группах высокого риска развития гестационного СД при синдроме поликистозных яичников (СПКЯ) и семейном анамнезе СД-2. Препарат таурина (дибикор в дозе 1 г) использовали у женщин с СПКЯ в связи с его известными модулирующими эффектами на углеводный и липидный метаболизм [33]. Было показано, что у большинства женщин с СПКЯ имеется инсулинорезистентность, лабораторным проявлением которой является гиперинсулинемия разной степени выраженности, а в патогенезе заболевания имеют значение нарушения секреции и действия инсулина.

Результаты работы подтвердили, что таурин у женщин без избыточной массы тела снижает степень инсулинорезистентности натощак и усиливает функцию β-клеток за счет повышения секреции инсулина.

Авторы показали, что у женщин с избыточной массой тела улучшилась функция β-клеток со снижением абсолютной гиперинсулинемии на фоне повышения чувствительности к инсулину и его метаболического клиренса. Исследователи делают вывод о том, что таурин модулирует метаболические нарушения у пациенток с СПКЯ, уменьшая степень гиперинсулинемии, а его применение в течение 3 мес сопровождается улучшением функции β-клеток за счет коррекции I фазы секреции инсулина со снижением степени гиперинсулинемии. Перечисленные сдвиги в свою очередь обусловливают ассоциированное с ними улучшение функции яичников у пациенток с ановуляторной дисфункцией [30].

О.Н. Овсянниковой и Л.А. Звенигородской проведено двойное слепое плацебо-контролируемое сравнительное клиническое исследование, в котором продемонстрирована клиническая эффективность таурина у больных с неалкогольной жировой болезнью печени и СД-2 по сравнению с плацебо [34].

Заключение

Анализ данных литературы свидетельствует, что таурин (дибикор) обладает выраженными сосудорасширяющим, антиагрегантным, гипогликемическим, антитоксическим свойствами, регулирует активность ренин-ангиотензиновой и калликреин-кининовой систем. Установлено, что препарат влияет на сосудистое русло путем воздействия на различные мишени.

Показано, что таурин может выступать в качестве антипролиферативного и антиоксидантного агента в гладких мышечных клетках сосудов. В клетках эндотелия таурин способен подавлять апоптоз и воспалительные процессы, а также снижать окислительный стресс путем повышения образования NO. Прием таурина облегчает симптомы артериальной гипертензии и обращает процессы развития ригидности артериальной стенки у пациентов с сахарным диабетом 2-го типа.

ЛИТЕРАТУРА

1. Ferrari R., Merli E., Cicchitelli G. et al. ВСЕ АВТОРЫ! Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann NY Acad Sci 2004;1033:79–91.
2. Van Bilsen M., Smeets P.J., Gilde A.J., van der Vusse G.J. Metabolic remodelling of the failing heart: the cardiac bum-out syndrome? Cardiovasc Res 2004;61(2):218–226.
3. Mihin V.P. Cardiocytoprotectors — new direction of clinical cardiology. Archives of Internal Medicine 2011;1:21—28. Russian (Михин В.П. Кардиоцитопротекторы — новое направление клинической кардиологии. Архив внутренней медицины 2011;1:21–28).
4. Evseveva M.E., Nikulin G.P., Rostovtseva M.V. The use of metabolic drugs at the main cardiovascular disease in patients of different ages. Polyclinic 2008;4:72—75. Russian (Евсевьева М.Е., Никулина Г.П., Ростовцева М.В. Применение метаболических препаратов при основной сердечно-сосудистой патологии у больных различного возраста. Поликлиника 2008;4:72–75).
5. Statsenko M.E., Turkin, S.V., Shilin N.N., Dudchenko G.P. Additional features of myocardial cytoprotection when used in the combination therapy of chronic heart failure of ischemic etiology in patients with impaired carbohydrate metabolism. Volgograd Medical Scientific Journal 2014;3:29–34. Russian. (Стаценко М.Е., Туркина С.В., Шилина Н.Н., Дудченко Г.П. Дополнительные возможности миокардиальных цитопротекторов при их использовании в комбинированной терапии хронической сердечной недостаточности ишемической этиологии у больных с нарушениями углеводного обмена. Волгоградский научно- медицинский журнал 2014;3:29–34).
6. Tyurenkov I.N., Perfilova V.N., Borodin D.D. Comparative efficacy of mildronat, mexidol and trimetazidin in chronic heart failure caused by occlusion of the descending branch of the left coronary artery. Volgograd Medical Scientific Journal 2011;4:20–25. Russian (Тюренков И.Н., Перфилова В.Н., Бородин Д.Д. Сравнительная эффективность применения милдроната, мексидола и триметазидина при хронической сердечной недостаточности, вызванной окклюзией нисходящей ветви левой коронарной артерии. Волгоградский научно-медицинский журнал 2011;4:20–25).
7. Militante J.D., Lombardini J.B. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 2002;23:381– 393. 8. Li X.L., An Y., Jin Q. H., Kim M.S., Park B.R., Jin Y.Z. Changes of some amino acid concentrations in the medial vestibular nucleus of conscious rats following acute hypotension. Neurosci Lett 2010;477;11–14.
9. Abebe W., Mozaffari S. Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis 2011;1(3):293–311.
10. Choi M.J., Kim J.H., Chang KюJ. The effect of dietary taurine supplementation on plasma and liver lipid concentrations and free amino acid concentrations in rats fed a high-cholesterol diet. Adv Exp Med Biol. 2006;583:235–242.
11. Ochoa-de la Paz L.D., Martinez-Davila I.A., Miledi R., Martinez-Torres A. Modulation of human GAB- Arho 1 receptors by taurine. Neurosci Res 2008;61(3):302–308.
12. Bosgelmez I., Soylemezoglu T., Guvendik G. The protective and antidotal effects of raurine on hexavalent chtomium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res 2008;125(1):46–58.
13. Bres V., Hurbin A., Duvoid A., Orcel H., Moos F.C., Rabic A., Hussy N. Pharmacological characterization of volume-sensitive, taurine permeable anion channels in rat supraoptic glial cells. Br J Pharmacol 2008;130:1976– 1982.
14. Sener G., Ozer Sehirli A., Ipci Y., Cetinel S., Cikler E., Gedik N., Alican I. Taurine treatment protects against chronic nicotine-induced oxidative changes. Fundam Clin Pharmacol 2005;19:155–164.
15. Egan B.M., Abdih H., Kelly C.J., Condron C., Bouchier-Hayes D.J. Effect of of intravenous taurine on endotoxin induced acute lung injury in sheep. Eur J Surg 2001;167:575–580.
16. McCarty M.F. Complementary vascularprotective actions of magnesium and taurine: a rationale for magnesium taurate. Med Hypothes 1996;46:89– 100.
17. Hansen S.H. The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 2001;17:330–346.
18. Vasilieva I.S., Gordeev I.G. Effect of taurine on the clinical course of angina in patients with post-infarction cardiosclerosis. Physician. 2014;7:20–
25. Russian. (Васильева И.С., Гордеев И.Г. Влияние таурина на клиническое течение стенокардии напряжения у пациентов с постинфарктным кардиосклерозом. Терапевт 2014;7:20–25).
19. 19. Venturini A., Ascione R., Lin H., Polesel E., Angelini G.D., Suleiman M.S. The importance of myocardial amino acids during ischemia and reperfusion in dilated left ventricle of patients with degenerative mitral valve disease. Mol Cell Biochem 2009;330(1–2):63–70.
20. Das J., Vasan V., Sil P. Taurine exerts hypoglycemic effect in alloxaninduced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 2012;258:296–308.
21. Yanagita T., Han S.Y., Hu Y., Nagao K., Kitajima H., Murakami S. Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis 2008;7:38.
22. Ito T., Fujio Y., Schaffer S.W., Azuma J. Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. Adv Expt Med Biol 2009;643:523–532.
23. Ulrich-Merzenich G., Zeitler H., Vetter H., Bhonde R.R. Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur J Nutr 2007;46(8):431–438.
24. Sinha M., Manna P., Sil P.C. Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice. BMB Reports. 2008;41(9):657–663.
25. Gordeev I.G., Pokrovskaya E.M., Luchinkina E.E. Effect of taurine on the incidence of cardiac arrhythmias, QT interval dispersion in patients with heart failure due to c myocardial infarction: results of a comparative, randomized study. Cardiovascular Therapy and Prevention 2012;11(1):65–
70. Russian. (Гордеев И.Г., Покровская Е.М., Лучинкина Е.Е. Влияние таурина на частоту нарушений сердечного ритма, дисперсию интервала QT у пациентов c сердечной недостаточностью вследствие постинфарктного кардиосклероза: результаты сравнительного, рандомизированного исследования. Кардиоваскулярная терапия и профилактика 2012;11(1):65–70).

Источник: medi.ru

Метаболические препараты

Метаболические препараты занимают сегодня значительное место в спортивной медицине. Большинство из них являются малотоксичными соединениями, что позволяет проводить фармакологическое воздействие, варьируя дозы в широком диапазоне и обеспечивая обычно одновременное влияние на различные системы организма (многие препараты этой группы подробно представлены в соответствующих разделах).

Единой классификации метаболических препаратов до настоящего времени нет. Наиболее приемлемой на сегодня является представленная классификация И. С. Чекмана и Н. А. Горчаковой (цит. по Галенко-Ярошевскому, 2005).

https://www.youtube.com/watch?v=ytaboutru

1. Субстраты энергетического обмена

1.1. Макроэргические соединения: АТФ, АТФ-ЛОНГ, АДФ, АМФ (фосфаден), аденозин, гуанозин, инозин (рибоксин), креатинфосфат (неотон) и др.

1.2. Метаболиты гликолиза и пентозофосфатного цикла: глицеральдегид-3-фосфат, фруктозо-1,6-дифосфат, гексозофосфат, фосфоенолпируват и др.

1.3. Субстраты цикла трикарбоновых кислот: янтарная кислота и ее производные (натрия сукцинат, калия сукцинат, мексидол), яблочная кислота и ее производные (калия малат, натрия малат), а-кетоглутаровая кислота, фумаровая кислота.

2. Коферменты энергетического обмена: никотинамид, никотинамиддинуклеотид, никотин-амиддинуклеотидфосфат.

3. Компоненты дыхательной цепи: рибофлавин, никотинамид, никотинамиддинуклеотид, цитохром С, убихинон.

4. Субстраты и модуляторы липидного обмена

4.1. Субстраты обмена липидов: фосфолипиды (эссенциале), липин.

4.2. Модуляторы липидного обмена: L-карнитин, его препараты и производные (кардонат), милдронат, уфибрат).

4.3. Антиоксиданты: витамины с антиоксидантным действием, восстановленный глутатион и др.

https://www.youtube.com/watch?v=ytpolicyandsafetyru

5. Средства коррекции белкового обмена

5.1. Пуриновые и пиримидиновые основания и их производные: метилурацил, карбицил, кислоты фолиевая и оротовая, натрия нуклеинат.

5.2. Глютаминовая и аспарагиновая кислоты и их производные: аспаркам (панангин), маглукорд, N-ацетилцистеин, таурин, тауфон, аргинин, глютаргин, цитраргинин.

5.3. Глицин.

5.4. Дипептидные препараты: карнозин и др.

5.5. Модуляторы NO-синтетазы: N-нитро-L-аргинин, цитраргинин и др.

5.6. ГАМ К и ее производные: натрия оксибутират, ноотропил (пирацетам), аминалон, пикамилон, фенибут (ноофен) и др.

5.7. Другие аминокислоты: метионин, триптофан, лизин (лизина эсцинат) и др.

6. Синтетические препараты, регулирующие окислительно-восстановительные процессы в клетке: триметазидин (предуктал, тридуктан), пентоксифиллин (агапурин), триотриазолин и др.

Ученые вначале обратили внимание на возможность применения метаболических препаратов как регуляторов энергетического обмена в условиях сердечной недостаточности, ишемии миокарда, а также при различных патологических состояниях, сопровождающихся гипоксией, а впоследствии — в практике подготовки спортсменов высокой квалификации.

Далее рассмотрены некоторые препараты метаболического типа действия, применяемые в практике подготовки спортсменов высокой квалификации и в лечении специфической спортивной патологии, которые не рассматривались в других разделах данной книги.

  • Natrii adenosintriphosphas — ампулы по 1 мл) 1 %-го раствора
  • ATP-LONG — ампулы по 1 и 2 мл 2 %-го рас твора, таблетки по 0,01; 0,02 г
  • Neoton — лиофилизированный порошок для инъекционных растворов во флаконах по 0,5; 1; 2 и 5 г в комплекте с растворителем (в ампулах)
  • Phosphadenum — таблетки по 0,025; 0,05 г; 2 %-й раствор для инъекций
  • Esafosfina 5 г — одна упаковка содержит флакон с 5 г D-фруктозо-1,6-дифосфата натриевой соли в лиофилизированном порошке, что соответствует 3,75 г D-фруктозо-1,6-дифосфата, и флакон с растворителем — 50 мл стерильного инъекционного раствора (стерильной апирогенной очищенной воды для инъекций)
  • Esafosfina 100/50 мл (раствор, годный к употреблению) — 7,50/3,75 г D-фруктозо-1,6-дифосфата на 100/50 мл раствора (100 или 50 мл 7,5 %-го раствора D-фруктозо-1,6 дифосфата)
  • Natrium oxybutyricum — ампулы по 5 и 10 мл 20 %-го раствора; 66,7 %-й концентрат для раствора для приема внутрь по 37,5 мл; 5 %-й сироп во флаконах по 400 мл
  • Trimetazidinum — таблетки по 0,02 г, таблетки с модифицированным освобождением по 0,035 г
  • Mildronatum — капсулы по 0,25 г
  • Tiotriazolinum — таблетки по 0,1 г; ампулы по 2 мл 1 и 2,5 %-го раствора; суппозитории ректальные 0,2 г; капсулы глазные по 5 мл 1 %-го раствора
  • Riboxinum — таблетки по 0,2; 0,4 г; ампулы по 5 и 10 мл 2 %-го раствора
  • Adenosine phosphate — таблетки по 0,025 и 0,05 г; 2 %-й раствор для инъекций
  • Adenocor — 0,3 %-й раствор аденозина фосфата для инъекций
  • Asparkam (Panangin) — таблетки, ампулы по 5; 10; 20 мл
  • Kalii orotas — таблетки по 0,2 г
  • Magnerot — таблетки по 0,5 г
  • TAD 300 — упаковка содержит 5 ампул, в состав которых входит 0,323 г лиофилизированной натриевой соли восстановленного глютатиона и 5 ампул растворителя по 3 мл
  • TAD 600 — упаковка содержит 5 ампул, в состав которых входит 0,646 г лиофилизированной натриевой соли восстановленного глютатиона и 5 ампул растворителя по 3 мл

Метаболическая терапия

Организм здорового человека – сбалансированная система огромного количества метаболических процессов. Вещества, которые участвуют в них, называют метаболиты. Метаболическая терапия – это лечение различных недугов на клеточном уровне с помощью группы эффективных средств – естественных метаболитов.

На сегодняшний день метаболическая терапия является одним из немногих способов восстановления нормальной работы всех жизненно важных систем и органов. Она помогает вывести из «сна» резервные клетки и они начинают выполнять функции поврежденных или погибших. Очень часто метаболическая терапия применяется при рассеянном склерозе, при различных наследственных и генетических болезнях. Кроме этого, с ее помощью лечат:

  • моногенные синдромы;
  • сниженную функцию спинного мозга;
  • митохондриальные болезни;
  • миому матки .

Сосудисто-метаболическая терапия широко применяется для лечения нарушений. Такой метод показывает хорошие результаты и в борьбе с тяжелыми болезнями нервной системы. В сочетании с другими методами метаболическая терапия помогает восстановить гормональный баланс у пациенток с лишним весом. А при эндометриозе и климактерических расстройствах клинический эффект от проведения такого вида лечения достигается всего за 2-3 недели.

Метаболические препараты — WIKIATLETICS

Метаболическая терапия в кардиологии, гинекологии и неврологии дает положительный эффект в большинстве случаев. Но процесс лечения необходимо начинать как можно раньше после постановки диагноза, так как фактор времени играет в нем очень важнейшую роль. К примеру, больным после инсульта желательно начать прием лекарственных средств в течение года, только тогда можно рассчитывать на практически полное выздоровление.

В гинекологии и неврологии метаболическая терапия применяется часто, так как не имеет побочных эффектов.

Но все же некоторые меры предосторожности при ее использовании нужно соблюдать:

  1. Во-первых, не стоит заниматься самолечением. Только врач может определить, какие именно пациенту необходимы лекарственные средства.
  2. Во-вторых, метаболическая терапия в неврологии и кардиологии должна проводиться только комплексно! Если исключить из системы лечения даже один препарат, полное выздоровление может так и не наступить.

Источник: mega-garden.ru

Миокардиальные цитопротекторы

Суть действия метаболических средств заключается в способности трансформировать обменные процессы клеток миокарда (при условии развивающейся ишемии и гипоксии) с окисления жирных кислот на окисление глюкозы. Это дает возможность максимально эффективно использовать оставшийся кислород, выполнять цитопротекторный функции.

Особенностью, которая объединяет лекарственные средства разных фармакологических групп в одну, является практически полное отсутствие влияния на показатели кровообращения: пульс, давление, скорость кровотока.

Миокард инертен к этим лекарствам, их действие может лишь несколько усилить сократительную функцию сердечной мышцы, но никогда – наоборот. При этом на фоне приема метаболических средств энергетический потенциал организма растет существенно.

Классификация

Какой-то одной классификации препаратов в кариологии или неврологии не существует. Наиболее приемлема – по механизму действия. В соответствии с ней различают:

  • регуляторы обмена глюкозы (активация транспорта углевода в кардиоциты, стимулирование гликолиза) – глюкозо-инсулин-калиевая смесь;
  • ингибиторы карнитин-трансфераз, блокирующие синтез ферментов – Пергексилин;
  • блокаторы окисления жирных кислот – Ранолазин;
  • стимуляторы пируватдегидрогеназы – Левокарнитин;
  • с иными механизмами действия – Милдронат.

Характеристика отдельных представителей группы

Метаболические препараты – улучшают обмен веществ, но делают это разными способами, обладают неодинаковыми характеристиками, результативностью.

Сегодня медикаментов такого толка достаточно много, они используются для лечения соматических патологий, особенно связанных с сердцем и сосудами, а также участвуют в различных схемах интенсивной подготовки спортсменов к соревнованиям.

Глюкозо-инсулино-калиевая смесь

Глюкозо-инсулино-калиевая смесь

Препарат комбинированного действия, улучшающий метаболизм сердечной мышцы за счет активного транспорта глюкозы в кардиоциты с одновременным блокированием доступа в клетки жирных кислот.

Существенного действия на течение заболеваний сердца не оказывает, улучшает энергетический потенциал организма, субъективно улучшает самочувствие. Используют в качестве фонового лечения при затяжной реабилитации после перенесенных инфекций, оперативных вмешательств.

Актовегин

Актовегин, препараты серии

Актовегин активизирует обмен веществ в тканях, улучшает трофику, стимулирует регенеративные процессы. Проявляет антигипоксическое, нейропротекторное, ангиопротекторное, действие.

Препарат повышает поглощение и утилизацию кислорода, стимулирует микроциркуляцию, предупреждает ишемию

Триметазидин

Триметазидин

Наиболее популярное метаболическое средство с болеутоляющим и корректирующим обменные процессы действием. Препарат – ингибитор бета-окисления жирных кислот, усиливает синтез мембранных фосфолипидов, что повышает устойчивость кардиомиоцитов, поддерживает клеточный гомеостаз, снижая цитотоксическое влияние недоокисленных жирных кислот.

На практике это проявляется уменьшением приступов стенокардии, снижением дозы нитратов в терапии ИБС, что улучшает качество жизни пациента. Противопоказано лекарство детям до 18, беременным женщинам и пациентам с проблемами ЖКТ.

Ранолазин

Ранолазин

Точный механизм действия метаболического препарата Ранолазина не изучен. На практике при назначении снижает частоту приступов ишемии, потребности в Нитроглицерине, повышает устойчивость к физическим нагрузкам, оставляя стабильными показатели ЧСС и АД.

Применяется при стенокардии напряжения в качестве препарата замены при резистентности к стандартному лечению. Лекарство не совместимо с Дилтиаземом, Верапамилом, Дигоксином, статинами, противогрибковыми средствами, антидепрессантами.

Левокарнитин

Карнилев

Препарат – стимулирует синтез пируват-дегидрогеназы, снимает болевые приступы, увеличивает энергетический потенциал организма человека. Конкретных показаний к использованию нет. Включается в схемы комплексной терапии соматических патологий для улучшения общего самочувствия пациента.

Милдронат

Милдронат

Скандально известный метаболический препарат, ставший поводом для отстранения в соревнованиях Марии Шараповой. Суть действия – замедление синтеза карнитина в печени, блокировка его транспорта в кардиоциты, что усиливает распад глюкозы с выбросом большого количества энергии.

Никаких достоверных показаний или противопоказаний к использованию препарата в медицинской практике не существует. Вызывает временный прилив сил.

Коэнзим Q10

Коэнзим Q10

Мощный антиоксидант. Выводит свободные радикалы, омолаживает клетки. В составе комплексного лечения снижает количество осложнений со стороны сердца и сосудов, минимизирует риск внезапной смерти, повышает устойчивость к стрессовым и физическим нагрузкам, снижает класс у пациентов с ХСН. Официальная медицина рассматривает препарат в качестве БАДа.

Берлитион 300

Берлитион 300

Метаболическое средство на основе липоевой кислоты выпускается в таблетках или концентрата для приготовления инъекций: антиоксидант, детоксикант, снижает уровень холестерина в крови. Назначают при:

  • диабетической и алкогольной полинейропатии;
  • гепатитах разного генеза, циррозе, жировом гепатозе;
  • интоксикации разной этиологии;
  • атеросклерозе коронаров.

Противопоказан препарат детям и беременным.

Дибикор

Дибикор

Относится к таблетизированным метаболическим средствам из группы таурина. Проявляет свойства детоксиканта. Назначается при передозировке сердечными гликозидами, сахарном диабете обоих типов. Препарат не рекомендован детям, о влиянии на беременность данных нет. Нельзя забывать об индивидуальной переносимости лекарства.

Рибоксин

Рибоксин, таблетки

Основа – инозин. Выпускается в таблетках, капсулах, инъекционно. Используется при:

  • ОИМ;
  • коронарной недостаточности;
  • сердечных пороках;
  • миокардите, склерозе сердечной мышцы;
  • гепатитах всех форм, циррозе;
  • ЯБЖ;
  • алкогольных отравлениях;
  • радиоактивной интоксикации.

Противопоказано лекарство при подагре, индивидуальной непереносимости, пациентам с почечной недостаточностью.

Инозин

Инозин

Активное действующее вещество в метаболических препаратах такого типа – инозин: антиаритмик, антигипоксант, антиоксидант. Применяется при:

  • кардиомиопатиях, дистрофии миокарда, миокардите;
  • ИБС;
  • гепатозе, гепатите, циррозе;
  • аритмиях.

Кроме этого, Инозин используют для профилактики лейкопении во время проведения операции по удалению почки и при радиоактивном излучении. Противопоказан препарат при подагре и индивидуальной непереносимости.

Метионин

Метионин

Активное начало – одноименное вещество. Препарат таблетизирован. Проявляет свойства гепатопротектора, принимает участие в восполнении дефицита аминокислот. Назначают лекарство при заболеваниях печени и билиарной системы из-за нарушения липидного обмена, используют для профилактики токсического поражения печени мышьяком, бензолом, алкоголем, хлороформом.

Метионин применим для лечения сахарного диабета любого типа, белковых нарушениях, атеросклерозе. Нельзя использовать средство при индивидуальной непереносимости, вирусном гепатите С, энцефалопатиях, нарушении функции почек.

Надо отметить, что действие подавляющего большинства метаболических препаратов не имеет научно обоснованных рекомендаций к их назначению, но в практической медицине используются (Мексикор, Кокарбоксилаза, Инозин, янтарная кислота и так далее).

Литература

  1. Головкин В., Зуев А., Привалова М. и др. Когнитивные нарушения и кардиореспираторная дисфункция при дисциркуляторной энцефалопатии с кардиоцеребральным синдромом. Врач. 2018.
  2. Асташкин Е.И., Глезер М.Г. Влияние L-карнитина на оксидативный стресс при сердечно-сосудистых заболеваниях. Медицинский совет. 2016.
  3. Пасечник И.Н., Скобелев Е.И. Перспективы метаболической терапии критических состояний. Доктор. Ру. 2015.
  4. Семиголовский Н.Ю., Верцинский Е.К., Азанов Б.А., Иванова Е.В. Положительные инотропные свойства левокарнитина при синдроме малого выброса у больных острым инфарктом миокарда. Кардиология и сердечно-сосудистая хирургия. 2013.
  5. Yoshihisa A., Watanabe S., Yokokawa T. et al. Associations between acylcarnitine to free carnitine ratio and adverse prognosis in heart failure patients with reduced or preserved ejection fraction. ESC Heart Fail. 2017.
  6. Sharifi M.H., Eftekhari M.H., Ostovan M.A., Rezaianazadeh A. Effects of a therapeutic lifestyle change diet and supplementation with Q10 plus L-carnitine on quality of life in patients with myocardial infarction: A randomized clinical trial. J Cardiovasc Thorac Res. 2017.

Источник: sosudy.info

Метаболическая терапия

Метаболическая терапия в кардиологии

Организм здорового человека – сбалансированная система огромного количества метаболических процессов. Вещества, которые участвуют в них, называют метаболиты. Метаболическая терапия – это лечение различных недугов на клеточном уровне с помощью группы эффективных средств – естественных метаболитов.

Что представляет собой метаболическая терапия?

На сегодняшний день метаболическая терапия является одним из немногих способов восстановления нормальной работы всех жизненно важных систем и органов. Она помогает вывести из «сна» резервные клетки и они начинают выполнять функции поврежденных или погибших. Очень часто метаболическая терапия применяется при рассеянном склерозе, при различных наследственных и генетических болезнях. Кроме этого, с ее помощью лечат:

  • моногенные синдромы;
  • сниженную функцию спинного мозга;
  • митохондриальные болезни;
  • миому матки .

Сосудисто-метаболическая терапия широко применяется для лечения нарушений. Такой метод показывает хорошие результаты и в борьбе с тяжелыми болезнями нервной системы. В сочетании с другими методами метаболическая терапия помогает восстановить гормональный баланс у пациенток с лишним весом. А при эндометриозе и климактерических расстройствах клинический эффект от проведения такого вида лечения достигается всего за 2-3 недели.

Меры предосторожности при использовании метаболической терапии

Метаболическая терапия в кардиологии, гинекологии и неврологии дает положительный эффект в большинстве случаев. Но процесс лечения необходимо начинать как можно раньше после постановки диагноза, так как фактор времени играет в нем очень важнейшую роль. К примеру, больным после инсульта желательно начать прием лекарственных средств в течение года, только тогда можно рассчитывать на практически полное выздоровление.

Метаболическая терапия в кардиологии

В гинекологии и неврологии метаболическая терапия применяется часто, так как не имеет побочных эффектов.

Но все же некоторые меры предосторожности при ее использовании нужно соблюдать:

  1. Во-первых, не стоит заниматься самолечением. Только врач может определить, какие именно пациенту необходимы лекарственные средства.
  2. Во-вторых, метаболическая терапия в неврологии и кардиологии должна проводиться только комплексно! Если исключить из системы лечения даже один препарат, полное выздоровление может так и не наступить.

Скачать презентацию

Мы предполагаем, что вам понравилась эта презентация. Чтобы скачать ее, порекомендуйте, пожалуйста, эту презентацию своим друзьям в любой соц. сети.

Итак, чтобы скачать:

Шаг 1. Посмотрите, ниже находятся кнопочки всех популярных соцсетей. Наверняка Вы гдето зарегистрированы. Воспользуйтесь одной из кнопок, чтобы порекомендовать своим друзьям презентацию.

Шаг 2. После того, как Вы оставили рекомендацию в любой из соцсетей, кнопка «Скачать» активируется. Нажмите на нее, чтобы скачать файл.

Спасибо за посильную помощь нашему порталу!

Метаболические лекарственные средства в кардиологической практике

РЕКЛАМА

Основным патологическим состоянием, возникающим при многих заболеваниях сердечно-сосудистой системы, в частности при ишемической болезни сердца (ИБС), является гипоксия. Клинические данные свидетельствуют о том, что перспективным направлением в борьбе с гипоксией является использование фармакологических средств, уменьшающих гипоксию и повышающих устойчивость организма к кислородной недостаточности.

Особый интерес представляют лекарственные средства метаболического действия, целенаправленно влияющие на обменные процессы при гипоксии. Это препараты различных химических классов, их действие опосредуется различными механизмами: улучшением кислород-транспортной функции крови, поддержанием энергетического баланса клеток, коррекцией функции дыхательной цепи и метаболических нарушений клеток тканей и органов [5, 8, 11]. Подобными свойствами обладают антигипоксанты (Актовегин, Гипоксен, Цитохром С), антиоксиданты (Убихинон композитум, Эмоксипин, Мексидол) и цитопротекторы (триметазидин), которые широко используются в клинической практике [3, 9, 12–15].

Антигипоксанты

Антигипоксанты — препараты, способствующие улучшению утилизации организмом кислорода и снижению потребности в нем органов и тканей, суммарно повышающие устойчивость к гипоксии.

Актовегин — мощный антигипоксант, активирующий метаболизм глюкозы и кислорода. Антиоксидантное действие Актовегина обусловлено высоко супероксиддисмутазной активностью, подтвержденной атомно-эмиссионной спектрометрией [1, 4]. Суммарный эффект всех этих процессов заключается в усилении энергетического состояния клетки, особенно в условиях исходной ее недостаточности.

Накопленный клинический опыт отделений интенсивной терапии позволяет рекомендовать введение высоких доз Актовегина: от 800–1200 мг до 2–4 г для профилактики синдрома реперфузии при остром инфаркте миокарда, после проведения тромболитической терапии или балонной ангиопластики, при тяжелой хронической сердечной недостаточности (ХСН) [4, 6].

Гипоксен — антигипоксант, улучшающий переносимость гипоксии за счет увеличения скорости потребления кислорода митохондриями и повышения сопряженности окислительного фосфорилирования. Его применение возможно при всех видах гипоксии.

Цитохром С — ферментный препарат, является катализатором клеточного дыхания. Железо, содержащееся в Цитохроме С, обратимо переходит из окисленной формы в восстановленную, в связи с чем применение препарата ускоряет ход окислительных процессов. При применении препарата возможны аллергические проявления.

Антиоксиданты

Антиоксиданты — соединения различной химической природы, способные обрывать цепь реакций свободнорадикального перекисного окисления липидов или непосредственно разрушать молекулы перекисей. Антиоксиданты участвуют в уплотнении структуры мембраны, что уменьшает доступность кислорода к липидам.

Убихинон (коэнзим Q10) — эндогенный антиоксидант и антигипоксант с антирадикальным действием. Он защищает липиды биологических мембран от перекисного окисления, предохраняет ДНК и белки организма от окислительной модификации.

Защитная роль коэнзима Q10 при ИБС обусловлена его участием в процессах энергетического метаболизма кардиомиоцита и антиоксидантными свойствами. Клинические исследования последних десятилетий показали терапевтическую эффективность коэнзима Q10 в комплексном лечении ИБС, артериальной гипертензии, атеросклероза и синдрома хронической усталости [2, 3]. В терапии больных ИБС Убихинон композитум может сочетаться с бета-адреноблокаторами и ингибиторами ангиотензинпревращающего фермента (ИАПФ). Накопленный клинический опыт позволяет рекомендовать применение коэнзима Q10 и как средство профилактики сердечно-сосудистых заболеваний. Лечебные дозы Убихинона составляют 30–150 мг/сут, профилактические — 15 мг/сут.

Препарат малоэффективен у больных с низкой толерантностью к физической нагрузке, при наличии высокой степени стенозирования коронарных артерий.

Эмоксипин является синтетическим антиоксидантным средством, обладающим широким спектром биологического действия. Он ингибирует свободнорадикальное окисление, активно взаимодействует с перекисными радикалами липидов, гидроксильными радикалами пептидов, стабилизирует клеточные мембраны. Может комбинироваться с изосорбида-5-мононитратом, что позволяет достичь большего антиангинального и противоаритмического эффектов, предотвратить развитие сердечной недостаточности.

Мексидол — оксиметилэтилпиридина сукцинат. Подобно Эмоксипину, Мексидол является ингибитором свободнорадикальных процессов, но оказывает более выраженное антигипоксическое действие.

Основные фармакологические эффекты Мексидола: активно реагирует с перекисными радикалами белков и липидов; оказывает модулирующее действие на некоторые мембрансвязанные ферменты (фосфодиэстеразу, аденилатциклазу), ионные каналы; обладает гиполипидемическим действием, снижает уровень перекисной модификации липопротеидов; блокирует синтез некоторых простагландинов, тромбоксана и лейкотриенов; оптимизирует энергосинтезирующие функции митохондрий в условиях гипоксии; улучшает реологические свойства крови, подавляет агрегацию тромбоцитов.

Клинические исследования подтвердили эффективность Мексидола при расстройствах ишемического генеза, в том числе при различных проявлениях ИБС.

Цитопротекторы

В последнее время возрос интерес к метаболическому направлению в лечении стабильных форм ИБС. Метаболически действующие препараты потенциально могут сохранить жизнеспособность миокарда (гибернирующий миокард) до проведения операции по восстановлению коронарного кровотока. Метаболическая терапия направлена на улучшение эффективности утилизации кислорода миокардом в условиях ишемии. Нормализация энергетического метаболизма в кардиомиоцитах является важным и перспективным подходом к лечению больных ИБС.

Возможные пути цитопротекции:

торможение окисления свободных жирных кислот (триметазидин, ранолазин);

усиление поступления глюкозы в миокард (раствор глюкоза-натрий-инсулин);

Из известных в настоящее время миокардиальных цитопротекторов наиболее изученным препаратом с доказанными антиангинальным и антиишемическим действиями является триметазидин, реализующий свое действие на клеточном уровне и воздействующий непосредственно на ишемизированные кардиомиоциты. Высокая эффективность триметазидина в лечении ИБС объясняется его прямым цитопротекторным антиишемическим действием. Триметазидин, с одной стороны, перестраивает энергетический метаболизм, повышая его эффективность, с другой — уменьшает образование свободных радикалов, блокируя окисление жирных кислот [10, 13].

Механизм действия триметазидина связан:

с ингибированием 3-кетоацил-КоА-тиолазы, приводящим к снижению бета-окисления жирных кислот и стимуляции окисления глюкозы;

оптимизацией функции миокарда в условиях ишемии за счет снижения продукции протонов и ограничения внутриклеточного накопления Na + и Ca 2+ ;

ускорением обновления мембранных фосфолипидов и защитой мембран от повреждающего действия длинноцепочечных ацильных производных.

Указанные процессы помогают сохранить в кардиомиоцитах необходимый уровень АТФ, снизить внутриклеточный ацидоз и избыточное накопление ионов кальция.

Таким образом, противоишемическое действие триметазидина осуществляется на уровне миокардиальной клетки за счет изменения метаболических превращений, что позволяет клетке повысить эффективность использования кислорода в условиях его сниженной доставки и таким образом сохранить функции кардиомиоцита.

Триметазидин на российском фармацевтическом рынке представлен такими препаратами, как «Предуктал» (Франция), «Триметазид» (Польша), «Триметазидин», «Римекор» (Россия).

В многочисленных исследованиях убедительно продемонстрирована высокая антиангинальная и антиишемическая эффективность триметазидина у больных ИБС как при монотерапии, так и в комбинации с другими лекарственными средствами [14, 17, 18]. Препарат не менее эффективен в лечении стабильной стенокардии, чем бета-адреноблокаторы или антагонисты кальция, однако наибольшую эффективность он проявляет в сочетании с основными гемодинамическими антиангинальными препаратами. К преимуществам триметазидина относится отсутствие гемодинамических эффектов, что позволяет назначать препарат независимо от уровня артериального давления, особенностей сердечного ритма и сократительной функции миокарда.

Триметазидин может быть назначен на любом этапе лечения стенокардии в составе комбинированной антиангинальной терапии для усиления эффективности бета-адреноблокаторов, антагонистов кальция и нитратов у следующих категорий больных:

с впервые выявленной стенокардией напряжения;

у которых не удается достичь терапевтического эффекта гемодинамическими антиангинальными препаратами;

у лиц пожилого возраста;

Источник: heal-cardio.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.