Кардиогенная стволовая клетка


Запрограммированные стволовые клетки могут способствовать восстановлению миокардаСтволовые клетки, выделенные из организма человека, в норме имеют ограниченную способность к восстановлению миокарда. Результаты исследований, проведенных группой ученых из клиники Майо (Mayo Clinic, Minnesota, USA), по применению смеси из рекомбинантных кардиогенных факторов роста и мезенхимальных стволовых клеток (кардио­генная смесь), выделенных из костного мозга пациентов с ишемической болезнью сердца, свидетельствуют об успехах в восстановлении структурной и функциональной организации сердечной мышечной ткани.

Исследователи изолировали стволовые клетки костного мозга из организма 11 пациентов, перенесших операцию коронарного шунтирования. В клетках, выделенных из организма 2 пациентов, выявлены гены факторов транскрипции, которые экспрессируются только после поступления сигнала о нарушении гомео­стаза, что определяет высокие восстановительные способности этих стволовых клеток.


рдиогенную смесь применяли для индуцирования этого сигнала в клетках, не участ­вующих в репарации, что позволяло запрог­раммировать их на восстановление сердечной мышечной ткани. Эксперименты с остановкой сердца у мышей, которым вводили кардиогенную смесь, показали более значительное восстановление сократительной способности миокарда и повышение выживаемости в течение 1 года, по сравнению с опытом применения непрограммированных стволовых клеток или физиологического раствора. В час­тности, ученые выявили, что сердечная ткань восстанавливается более эффективно в зонах повреждения, и рубцовые изменения имеют тенденцию к исчезновению.

По материалам www.sciencedaily.com
© Joeygil | Dreamstime.com Dreamstock.ru

Источник: www.umj.com.ua

Cтволовые клетки классифицированы в соответствии со своей возможностью к дифференцировке как тотипотентные, плюрипотентные и мультипотентные.
Тотипотентные — клетки, способные дифференцироваться в любые клетки организма. Как из одной оплодотворенной клетки вырастает целый организм.
Плюрипотентные — клетки, способные образовывать множество различных клеток, но не целый организм.
Мультипотентные — клетки, способные образовывать клетки тканей из которых они были взяты.
Унипотентные — клетки дающие начало только одному типу клеток.
Клетки развивающегося эмбриона изначально тотипотентны, но теряют это свойство после нескольких клеточных делений, т.е.


и дифференцируются. Некоторые из клеток организма, не дифференцируются окончательно, а становятся плюрипотентными, т.е. способны давать лишь некоторые типы клеток целого организма. Тотипотентные клетки эмбриона называют
так же — эмбриональные стволовые клетки (ESC), а плюри- и мультипотентные клетки организма называют — взрослыми стволовыми клетками. Функция первых в организме очевидна, из одной клетки должен развиться целый организм с огромным числом клеточных типов (~200 у человека), каждый из которых выполняет свою функцию. Взрослые стволовые клетки необходимы организму для восполнения погибших клеток в процессе жизни. Взрослые стволовые клетки способны заменять практически все ткани в организме: мозг, костный мозг, кровь, почку, эпителий пищеварительной системы, кожу, сетчатку, мышцы, поджелудочную железу и печень.
Взрослые стовловые клетки способны к самоподдержанию и производству клеток -предшественников, которые затем дифференцируются.

Гематопоэзные стволовые клетки (HSC)

Клетки способные производить все клетки крови находятся в крастном костном мозге. Клетки из которых образуются клетки крови имеют на своей поверхности маркеры CD34, CD59 и Thy1,
по которым могут быть идентифицированы.


Нейральные стволовые клетки (NSC)

Нейрогенез в мозге происходит в двух местах: субвентрикулярная зона (СВЗ), из которой были изолированы первые с.к., и зубчатая извилина. Зрелые нейроны образуются в обонятельной луковице , область в которую мигрируют клетки из СВЗ различными путями называемыми ростральной миграционной системой. СВЗ содержит эпиндимальные клетки и астроциты со схожей ролью с клетками стромы в костном мозге. Эпидимальные клетки и астроциты образуют каналы называемые глиальные трубки по которым происходит миграция нейробластов к обонятельной луковице, где дифференцируются в перигломерулярные или гранулярные нейроны, которые выстраиваются цепочкой. Астроциты в трубках обеспечивают питание клеток.

Известны молекулярные маркеры, позволяющие идентифицировать как стволовые нервные клетки, так и последовательные фазы их развития, — это нестин для ство-ловой клетки, виментин для клетки-предшественника, бета-тубулин для нейробласта,
GFАР (кислый глиальный фибриллярный белок) для клетки, "движущейся" в направлении глиального развития и т. д.
Установлено, что нервные стволовые клетки характеризуются выраженным консерватизмом, так что человеческие стволовые клетки способны мигрировать и развиваться в случае их трансплантации в мозг крысы.


лее того, в экспериментах было показано, что даже нервные стволовые клетки дрозофилы способны дифференцироваться в случае их ксенотрансплантации в мозг такого отдаленного таксона, как крыса. Для этой цели были получены трансгенные линии дрозофилы, содержащие человеческие гены, кодирующие нейротрофические факторы NGF, GDNF, BDNF. Человеческие гены были встроены в вектор Саsреr под дрозофилиным хит-шоковым промотором, так что температура тела млекопитающих служила автоматическим активатором соответствующих генов. Для идентификации клеток дрозофилы в геном трансгенных линий был введен ген бактериальной галактозидазы 1асZ, продукт которого легко
выявляется с помощью гистохимической Х-гал окраски. Тем самым нервные клетки ксенотрансплантата легко обнаруживаются среди клеток реципиента или котрансплантата. Оказалось, что нервные стволовые клетки дрозофилы не только выживают, но и мигрируют и дифференцируются в мозге крысы.

Мышечные стволовые клетки (MSC)

Обонятельные стволовые клетки

Дают начало обонятельным клеткам. Располагаются в слизистой носа.

Стволовые клетки печени

В нормальном состоянии клетки печени деляться очень медленно, но под влияниям повреждений или инфекции пролиферация клеток усиливается многократно. Имеется 3 популяции клеток, способных востановить печень.

Эмбриональные стволовые клетки (ESC)

Кардиогенная стволовая клеткаЭмбриональные стволовые клетки получают из внутренней клеточной массы бластоциста от оплодотворения яйцеклетки до ее имплантации, при этом бластоциста
мыши достигает 150 клеток и представляет собой сферу с внешним слоем клеток, полостью бластоцеля заполненной жидкостью и внутренней клеточной массой.


r /> ESC человека могут быть получены пересадкой ядер, называемой так же терапевтическое клонирование. При пересадке ядра соматической клетки донора (например в клетку кожи) в яйцеклетку с удаленным ядром, образуется бластоциста, клетки которой тотипотентны. Стволовые клетки полученные таким образом не отвергаются при пересадке.
ESC могут быть получены из примордиальных клеток из которых образуются яйцеклетки и сперматозоиды.
Классическими маркерами ЭСК являются изозимы щелочной фосфатазы, транскрипционный фактор Осt-4, высокая теломеразная активность и ряд маркеров клеточной поверхности, например GСТМ-2, TRA 1-60, SSЕА-3 и SSЕА-4, распознаваемые моноклональными антителами к специфическим эмбриональным или опухоль-определяющим антигенам. Физиологическое значение большинства маркеров остается неясным,
за исключением Осt-4. Исследования, проведенные на ЭСК и эмбрионах мыши, выявили критическую роль Осt-4 в поддержании тотипотентности ранних эмбриональных клеток и клеток зародышевого пути. Дифференцировка клеток внутренней массы сопровождается понижением уровня Осt-4, а изменение уровня синтеза Осt-4 в ЭСК в свою очередь приводит к потере тотипотентности и переходу к дифференцировке. Кроме Осt-4, имеется еще ряд транскрипционных факторов, синтезируемых в основном недифференцированными ЭСК, например Nanog, который занимает важное место в иерархии факторов, определяющих недифференцированную природу ЭСК, и происхождение.


Маркеры стволовых клеток

Гены "стволовости"

Повышенная экспрессия в стволовых клетках регуляторных генов, таких как НохВ4, Неs-1 или AMLI-ETO приводит к размножению стволовых клеток in vitro и in vivo.

Лечение стволовыми клетками

Первое клиническое применени стволовых клеток началось еще до их открытия. При переливании крови в организм реципиента
попадают стволовые клетки донора, которые внедряются в организм реципиента и дифференцируются. При лейкозах (рак крови) широко применяют обильное переливание крови и пересадку костного мозга — вводят в организм клетки, дающие начало всем клеткам крови. В результате образуются нормальные, не пораженные раком лейкоциты и лимфоциты, что улучшает состояние пациента. К сожалению, при переливании крови или пересадке ткани костного мозга от одного человека к другому может наблюдаться реакция отторжения. Ее пытаются минимизировать, подбирая донора, антигенная структура белков которого сходна с таковой у реципиента. Используют также лекарства, подавляющие иммунный ответ последнего. Однако это может быть опасно, ибо иммунная система обеспечивает очищение организма от инфекционных агентов и время от времени возникающих в нем клеток с измененным геномом; тогда отдельные из них могут малигнизироваться (т.е.


евратиться в раковые). Решить проблему тканевой несовместимости можно, вероятно, используя
для пересадки стволовые клетки самого пациента, размноженные вне организма. Очень важно то, что стволовые клетки почти не подвержены злокачественному перерождению, поскольку обладают системой зашиты генома значительно более мощной, чем вступившие на путь специализации. Вот почему ныне из костного мозга больных лейкозом выделяют стволовые клетки и консервируют их в жидком азоте. Затем собственный костный мозг, включая содержащиеся в нем опухолевые клетки, подавляют облучением или цитостатиками (лекарствами, блокирующими рост и размножение клеток), после чего восстанавливают кроветворение и иммунитет, пересаживая сохраненные в азоте стволовые клетки, из которых образуется полный набор нормальных клеток крови. Такую замену производят не только при лейкозах, но и при других опухолях, если лечение включает курсы радио- или химиотерапии.
В настоящее время для каждого рождающегося человека может быть создан запас стволовых клеток, по свойствам близких к эмбриональным и генетически тождественных всем его другим
клеткам. Для этого при родах нужно собирать содержащую их пуповинную кровь и хранить ее (или выделенные из нее клетки) в жидком азоте вплоть до момента, когда она понадобится для пересадки.

Лечение заболеваний сердца


Инфаркт миокарда вызывается спазмом или закупоркой артерий, питающих мышцу сердца. Пораженные сосуды удаляют, а для восстановления кровообращения применяют шунтирование. Однако это не обеспечивает восстановление погибшего участка сердечной мышцы. Если зона инфаркта обширна, то сократительная функция сердца значительно страдает, и больной не может вести нормальный образ жизни. Пересадка препаратов стволовых клеток, полученных из его костного мозга, а также производных эмбриональных или фетальных клеток путем вливания их суспензии в общий кровоток или инъекцией непосредственно в миокард по границе зоны омертвления мышцы (последнее делается в процессе шунтирования) приводит к частичному или полному восстановлению структуры и функции миокарда и значительно улучшает качество жизни
больного.

Лечение заболеваний костной системы

Введение полученных из стволовых клеток остеобластов (предшественники клеток кости) в зону перелома значительно ускоряет процесс сращивания кости, а введение хондробластов (предшественники клеток хряща) в суставную сумку стимулирует регенерацию хряща на суставных поверхностях.

Лечение рака

Stem cells have acquired a golden glow in the past few years
as a possible tool for reversing the damage of various organs.
The prediction was that stem cell transplants, whether derived
from embryonic tissue or from adult cells that retain
the fl exibility to develop into various tissues, will someday
repair hearts crippled by heart attacks or brains under attack
by Alzheimer’s or Parkinson’s disease. But the very qualities
that make these cells so attractive to medicine, especially
their capacity to replicate ad infi nitum, also hint at a
dark side. Evidence suggests that they may be the source of


the mutant cells that give rise to cancerous tumors (also reviewed
in [115]. In studies of cells in blood cancers such as
leukemia and in breast and brain cancers, cells called “cancer
stem cells” have been identifi ed. The fi ndings have raised
the possibility that the mutations that drive cancer development
may have originated in the body’s small supply of naturally
occurring stem cells. Cancer stem cells resemble these
normal cells in several ways. In particular, both types are selfrenewing.
Thus, when they divide, one of the daughter cells
differentiates into a particular cell type that eventually stops
dividing, but the other retains its stem cell properties, including
the ability to divide in the same way again. Therefore,
it is possible that cancer stem cells, which form only a small
proportion of the total tumor cell population, are the only
tumor cells with the capacity to keep tumors growing.

In the early 1990s, Dick and colleagues [116,117] used a
model to study the development of human hematopoietic
stem cells which give rise to various types of blood cells.


e
model is based on an extremely immunodefi cient mouse
strain, the NOD/SCID mouse. The animals were irradiated
to destroy their bone marrow and then human stem cells
were introduced to see if they would produce a new complement
of blood cells. After showing that normal human
hematopoietic stem cells could do this, Dick and his team
used the approach to study the cancer-causing power of
acute myeloid leukemia (AML) cells freshly harvested from
human patients [118]. By a progressive dilution of a known
number of leukemia cells, it was possible to establish that
only a very rare AML cell, about one in a million, had the
ability to reproduce the disease in the animals. Because this
was a much smaller fraction of cells than that necessary to

form colonies in culture, the result indicated that the simple
ability to grow did not equate with the ability to develop
into leukemia in living animals. Thus one could speculate
that the leukemia-initiating cells had a greater developmental
potential than the vast majority of clone-forming cells
and might even be stem-like cells. Subsequently, the leukemia-
initiating cells were characterized according to surface
protein markers that distinguish the various cell types of the
hematopoietic system. The leukemia-initiating cells turned
out to belong to an exclusive group. They were positive for
the CD34 marker and negative for CD38, the same as human
hematopoietic stem cells, and did not carry the markers
of more mature cells. The cancer cells’ resemblance to
normal stem cells holds up even though AML is a heterogeneous
disease, with several different subtypes depending
on which genetic abnormalities the patients’ cells carry.

Dick and his colleagues characterized the leukemia-initiating
cells from the various AML subtypes and found that all
belonged to that same CD34+/CD38– class. When put into
NOD/SCID mice, however, each cell type produced a leukemia
identical to that in the patient from which it had originally
been isolated. A plausible conclusion from this study
is that the initial mutations that gave rise to the leukemias
arose in normal stem cells, causing them to take the wrong
developmental pathway.
Another line of evidence suggesting that cancers originate
from stem cells comes from studies of the biological machinery
underlying self-renewal. Normal and cancer stem
cells show some striking similarities. Recently, for example,
researchers have shown that the genes Bmi-1 and Wnt, both
of which can cause cancer when mutated, are needed for
self-renew in normal and cancer stem cells (also reviewed
in [119]. The Bmi-1 gene participates in normal hematopoietic

development, and its malfunction has been linked to
AML. A study reported by Park and collaborators [120] and
another by Lessard and Sauvageau [121] link the gene to
self-renewal. To test whether cells missing Bmi-1 can selfrenew,
the researchers transplanted stem cells from Bmi-1
knockout mice into normal mice that had been irradiated
to destroy their bone marrow. The stem cells produced a
normal complement of blood cells, but only for very short
period of time. After eight weeks, blood cells derived from
the transplanted cells had almost disappeared, and when
bone marrow taken from the animals was put into a second
series of mice, no Bmi-1-defi cient blood cells could be detected.
Bmi-1 is also needed for the self-renewal of leukemia
cells [121]. In previous reports, Sauvageau and collaborators
revealed that they could cause an AML-like disease
in mice by introducing two oncogenes, Meis1a and Hoxa9,

into the bone marrow cells of the animals [122]. This result
shows that without Bmi-1, leukemia stem cells die out,
just as normal stem cells do. The Wnt gene is likewise the
focus of a great deal of research by both cancer researchers
and developmental biologists. The protein encoded by the
gene normally controls cell fate decisions during the development
of many of the body’s tissues. It exerts its effects by
binding to, and thus activating, a receptor on the cell surface
membrane. This in turn sets off a series of changes inside
the cell, culminating in the activation of genes governing
cell division and differentiation. Details of these processes
however, are still poorly understood and require further
intensive research both in the area of stem cells, including
lessons learned from the biology of embryonic stem cells,
as well as from the biology of various cancer cell lines and
various types of cancer.

Лечение заболеваний нервной системы

Сокращения.
in vivo — в живом организме
in vitro — в пробирке

Источник: cellbiol.ru

Заместительная регенеративная клеточная терапия представляет наиболее перспективный инновационный метод в борьбе с последствиями инфаркта миокарда и другими функциональными и структурными изменениями сердца. В качестве материала для клеточной трансплантации и регенерации миокарда наиболее широко используются эмбриональные стволовые и мезенхимальные стволовые клетки, а также некоторые другие типы стволовых и прогениторных клеток. Основная задача, возлагаемая на стволовые клетки — дифференцироваться в функционально активные кардиомиоциты и интегрироваться в ткань миокарда реципиента. Управление дифференцировкой стволовых клеток в миокарде идет за счет влияния микроокружения и прямой межклеточной сигнализации, которая регулирует направление дифференцировки. В настоящее время экспериментально подтверждены три основных типа взаимодействия стволовых/прогениторных клеток с кардиомиоцитами, в той или иной степени связанные с трансдифференцировкой. Это слияние клеток, образование межклеточных контактов классического типа (щелевые «дар» контакты) и недавно описанный тип взаимодействия — туннельные нанотрубочки. В обзоре рассмотрены данные по положительному влиянию стволовых и прогениторных клеток при заболеваниях сердца и роли межклеточных взаимодействий в реализации этих эффектов.

Введение

Клеточная терапия для регенерации и восстановления функций миокарда перешла в последнее время из области экспериментальных работ к клиническим испытаниям. На это направление лечения тяжелых сердечных заболеваний большие надежды возлагают как врачи, так и пациенты. Заболевания сердца и сосудов, прежде всего, инфаркт миокарда (ИМ), по-прежнему занимают ведущее место среди причин смерти больных в развитых странах. Проблема ишемических повреждений в случае сердца значительно усугубляется ограниченной способностью кардиомиоцитов к регенерации, из-за чего, как при остром инфаркте, так и при хронической ишемии происходит замещение функциональных клеток соединительной тканью, что приводит к изменению электрической проводимости и дисфункции миокарда.

Традиционные методы фармакологического лечения направлены на защиту и поддержание деятельности рабочего миокарда. Единственным способом радикального лечения остается применение тканевых трансплантатов сердца или сердечно-легочных комплексов. В мире ежегодно проводится 2,7^4,5 тыс. трансплантаций сердца и комплекса «сердце^пегкие» [1, 2]. Однако, такие операции очень травматичны, высок процент летальности, обязательна серьезная медикаментозная поддержка для предотвращения отторжения из-за иммунологической несовместимости, подходящий трансплантационный материал дефицитен, и очередь на такую операцию расписана вперёд на несколько лет, сокращая, тем самым, для многих шанс выжить. Поэтому заместительная регенеративная клеточная терапия представляется наиболее перспективным инновационным методом в борьбе с последствиями ИМ и другими функциональными и структурными изменениями миокарда.

Типы применяемых для терапии клеток

В качестве материала для клеточной трансплантации и регенерации миокарда наиболее широко используются эмбриональные стволовые и мезенхимальные стволовые клетки (ММСК). Эмбриональные стволовые клетки ИСК) представляют собой плюрипотентные клетки, полученные из клеток бластоцисты и самоподдержи-вающиеся в культуре, то есть обладающие высоким пролиферативным и клоногенным потенциалом. При этом они способны дифференцироваться практически в любые клетки организма. Первые линии мышиных ЭСК были получены в 1981 году М. Evans и М. Kaufman [3], человеческие ЭСК научились культивировать в 1998 г. J. Thomson и соавт. [4]. С тех пор ЭСК рассматриваются как средство регенеративной и заместительной клеточной терапии, в том числе и миокарда. Дифференцировать мышиные ЭСК в кардиомиоциты удалось в 1985 г. [5], однако только в 90-х годах XX в. начались широкие исследования способов направленной диффе-ренцировки ЭСК в клетки миокарда с целью их дальнейшего использования для оптимизации его регенерации. В 2001 г. удалось дифференцировать человеческие ЭСК в кардиомиоциты, обладающие специфическими структурными и функциональными характеристиками [6]. Такие кардиомиоциты, пересаженные в сердце свиньи, проявляли пейсмейкерную активность и формировали устойчивые связи с клетками миокарда реципиента [7]. Тем не менее, по причинам, описанным ниже, опыт применения ЭСК для экспериментального лечения повреждений миокарда остается пока весьма незначительным. В частности, показано, что введение крысам с инфарктом миокарда ЭСК в зону инфаркта или коронарную артерию приводило к уменьшению очага поражения и улучшению сократительной функции желудочка [8, 9]. Через несколько недель после введения мышиные ЭСК превращались в кардиомиоциты, сходные с клетками реципиента, при этом не наблюдалось иммунного отторжения.

Таким образом, ЭСК представляются весьма перспективным объектом для терапии сердечных заболеваний, однако на пути их активного применения стоит ряд серьезных проблем. Помимо этических аспектов при их получении из эмбриона, проблему представляет высокая туморогенность ЭСК при введении в организм; направление их дифференцировки часто малопредсказуемо, что приводит к высокой вероятности образования тератом[10]. Кроме того, стандартные методы работы с ЭСК предполагают стадию культивирования на подложке из мышиных эмбриональных фибробластов, что ведет к возможности контаминации клеток.

Очевидно, наиболее перспективны ЭСК в качестве исходного материала для дифференцировки in vitro в кардиомиоциты, которые затем могут использоваться для трансплантаций. Об этом говорят и недавние исследования по введению овцам с постинфарктной сердечной недостаточностью мышиных ЭСК, коммитиро-ванных по пути дифференцировки в кардиомиоциты[11]. Такие частично дифференцированные ЭСК, введенные в зону очага инфаркта или по его периферии, вызывали регенерацию миокарда и восстановление функции, причем как при наличии, так и в отсутствии иммуносупрессорной терапии. Аналогичные данные были получены при введении человеческих ЭСК, дифференцированных в кардиомиоциты, крысам с аритмией, где эти клетки формировали участок человеческого миокарда [12].

Мультипотентные мезенхимальные стромальные клетки

Мультипотентые мезенхимальные стромальные клетки (ММСК) представляют другой активно изучаемый тип стволовых клеток, перспективных для восстановления поврежденной ткани миокарда. Их исследования ведутся с 1 966 года, когда ММСК были впервые обнаружены в костном мозге [13]. Несмотря на то, что ММСК составляют минорную фракцию (около 0,01%) стволовых клеток костного мозга [14] по сравнению с гемопоэти-ческими стволовыми клетками (ГСК), они играют огромную роль в репаративных процессах in vivo и оказались чрезвычайно востребованы для клеточных технологий. До изучения фенотипических особенностей ММСК выделялись и описывались как культура адгезивных стро-мальных клеток костного мозга, характеризующихся высокой пролиферацией и мультипотентностью. Затем ММСК были охарактеризованы по многим маркерным белкам (CD29, CD44, CD105, Sca-1 и др.), и появилась возможность выделять их с помощью FACS [ 15—17] и MACS [17] технологий.

В 1999 г. была показана возможность дифференцировки ММСК в кардиомиоциты in vitro [18], а в 2001 г. дифференцировка костномозговых клеток в кардиомиоциты была показана in vivo при трансплантации в сердце после инфаркта [19]. Однако, при этом не была исключена возможность возникновения кардиомиоцитов из ГСК, которые также присутствовали в клеточной суспензии. В дальнейшем возможность дифференцировки в кардиомиоциты подвергалась сомнениям [20]; хотя единого мнения по этому поводу так и не сформировано.

С другой стороны, мультипотентность ММСК костного мозга и их способность дифференцироваться в кардиомиоциты, в том числе при сокультивировании, были неоднократно доказаны [21 —23]. Проблема заключается в том, что ММСК составляют очень незначительную часть клеток костного мозга, поэтому необходимо использовать методики фенотипического выделения и наращивания клеток in vitro, чтобы получить достаточные количества ММСК для их реального клинического применения. Поэтому в большинстве клинических исследований для введения пациентам с инфарктом миокарда используются тотальные препараты костного мозга, содержащие и ММСК, и ГСК, и эндотелиальные прогени-торные клетки [24^26]. В результате сложно соотнести положительный эффект (часто весьма значительный) таких трансплантаций с воздействием какого-то определенного типа стволовых клеток. В то же время, имеются свидетельства по улучшению сердечных функций при введении чистых культур ММСК [27, 28].

Несмотря на перечисленные сложности, ММСК считаются чрезвычайно перспективным объектом клеточной терапии, и именно на их всестороннее изучение направлена значительная часть клинических и экспериментальных исследований, что обусловлено рядом обстоятельств. Во-первых, из всех соматических стволовых клеток именно ММСК демонстрируют в экспериментах потенции к дифференцировке в клетки всех трех зародышевых листков: энтодермы, мезодермы и эктодермы [29—31 ], хотя ортодоксальными направлениями дифференцировки ММСК считаются клетки мезенхимного происхождения (остеоциты, адипоциты, хондро-циты, лейомиоциты, теноциты). Во-вторых, фенотип поверхностных антигенов ММСК характеризуется очень низкой иммуногенностью [32, 33]. Кроме того, имеются свидетельства иммуномодуляторных эффектов ММСК на организм реципиента [33]. Благодаря этим свойствам пересадка даже аллогенных клеток приводит к высокой степени включения их в ткани реципиента и длительному сохранению в них [34—36]. В то же время для ММСК не было описано случаев реакции «трансплантат против хозяина», что имеет место при пересадках костного мозга из-за образования иммуноком-петентных клеток, не толерантных к тканям реципиента.

Наконец, ММСК могут быть получены не только из костного мозга, но и из жировой ткани или пуповинной крови [37, 38], а также плаценты [39], сосудов [40], тимуса [41], амниотической жидкости [42]. В большинстве случаев эти способы получения ММСК не столь эффективны, как выделение из костного мозга, однако такие клетки обладают всеми фенотипическими характеристиками ММСК и мультипотентностью. Исходя из сходства фенотипа и дифференцировочного потенциала ММСК из различных источников (список которых с каждым годом все пополняется) можно предполагать, что все эти клетки потенциально могут использоваться в регенеративной терапии кардиологических заболеваний, что, однако, требует отдельных углубленных исследований.

Стволовые клетки сердца (СКС)

В ряде недавних исследований было описано существование в миокарде «взрослых» млекопитающих популяции собственных стволовых клеток. До этого существование стволовых клеток сердца подвергалось сомнениям, поскольку сердечная мышечная ткань считалась полностью постмитотической тканью. Однако в ряде работ было описано присутствие в сердце пула делящихся клеток [43, 44], которые были охарактеризованы по фенотипическим признакам и мультипотентнос-ти как стволовые. Эти клетки могут дифференцироваться в гладкомышечные, эндотелиальные клетки и собственно кардиомиоциты, а трансплантация их мышам с инфарктом миокарда приводит к восстановлению органа. Недавно были выделены стволовые клетки миокарда взрослых мышей, а затем и человека [45]. Клетки экспрессировали маркеры стволовых клеток c-kit, Sea и MDR, обладали высокой пролиферативной активностью и были способны дифференцироваться в кардиомиоциты in vivo и in vitro [46]. Появились первые данные о возможности выделения этих клеток и наращивания их in vitro, при этом не теряется их способность дифференцироваться, что делает возможным использование их в будущем для терапии инфаркта миокарда.

Взаимодействие стволовых/прогениторных клеток с кардиомиоцитами

Итак, на сегодняшний день основные кандидаты для регенеративной клеточной терапии миокарда определены — это ЗСК, ММСК и СКС. При этом применение ЗСК и СКС видится более перспективным [47], однако, их внедрение в клиническую практику пока вызывает множество сложностей. В то же время, ММСК уже прошли многие стадии доклинических испытаний и по ним накоплен достаточно серьезный экспериментальный и клинический опыт. Поэтому в силу дисбаланса в массиве экспериментальных данных механизмы взаимодействия клеточного трансплантата с миокардом рассматриваются далее в основном на примере ММСК.

Что же лежит в основе нормализации сердечной функции при введении стволовых клеток? Очевидно, что в первую очередь — это образование новых функциональных элементов миокарда, кардиомиоцитов, замещающих клетки, погибшие в результате инфаркта. Таким образом, основная задача, возлагаемая на стволовые клетки — дифференцироваться в функционально активные кардиомиоциты и интегрироваться в миокард реципиента. При этом процессы дифференцировки должны жестко регулироваться в соответствии с тканевой нишей, то есть стволовые клетки должны превращаться именно в кардиомиоциты и именно в миокарде. В противном случае очень вероятно возникновение тератом или очагов несоответствующей органу ткани.

Из этого следует, что управление дифференциров-кой стволовой клетки идет в миокарде за счет влияния микроокружения и прямой межклеточной сигнализации, когда соседние клетки регулируют направление дифференцировки за счет межклеточной сигнализации.

В этой связи, в последнее время все большее количество исследований посвящено взаимодействию стволовых и прогениторных клеток с кардиомиоцитами через прямые контакты клеточных мембран, обмен цитоплазматическими сигналами и слияние клеток. Очевидно, что для полноценной регенерации миокарда стволовые клетки должны не просто дифференцироваться в кардиомиоциты, а еще и полностью интегрироваться в миокард с образованием соответствующих электрических и цитоплазматических связей. Иначе даже дифференцировавшиеся в кардиомиоциты клетки, не включившись в единый функциональный синцитий сердечной мышцы, не только не улучшат функционирование поврежденного миокарда, но могут стать источниками аритмий [48^ 50], угрожающих жизни реципиента.

Исходя из этого, логично предположить, что процессы дифференцировки стволовых/прогениторных клеток идут параллельно с образованием устойчивых связей с кардиомиоцитами хозяина, более того, именно образование таких контактов может служить сигналом для начала специализации недифференцированной клетки. Косвенно это подтверждается рядом наблюдений за ми-областами, которые, будучи пересаженными в сердце, могут оставаться несопряженными с кардиомиоцитами реципиента, несмотря на наличие всех фенотипических признаков сократительной клетки [51].

В настоящее время экспериментальное подтверждение получили три основных типа взаимодействия стволовых/прогениторных клеток с кардиомиоцитами, в той или иной степени связанные с трансдифференциров-кой. Это слияние клеток, образование межклеточных контактов классического типа (щелевые «дар» контакты) и недавно открытый тип взаимодействия — туннельные нанотрубочки.

Щелевые контакты

Щелевые контакты являются основным типом взаимодействия кардиомиоцитов в миокарде. Именно за счет щелевых контактов миоциты образуют единую электрически сопряженную сеть в отделах сердца, любое нарушение в которой приводит к возникновению аритмий вплоть до фибрилляции. Нарушение проводимости в миокарде является главным негативным последствием ишемических поражений и формирования рубцовой ткани после инфаркта, и, следовательно, восстановление сопряженности кардиомиоцитов является доминирующей целью регенеративной клеточной терапии. Однако, на сегодняшний момент множество исследований показывает, что клеточные трансплантации могут сами провоцировать аритмии. Одним из предполагаемых механизмов этого явления считают как раз недостаточное образование щелевых контактов между трансплантированными клетками и кардиомиоцитами реципиента.

Основным структурным белком щелевых контактов в миокарде является коннексин 43 (Сх43), экспрессия и сборка которого сложно регулируются в зависимости от локализации в миокарде и функционального состояния клетки. Показано, что повышение Сх43 за счет овер-экспрессии снижает аритмию в системе, моделирующей трансплантацию скелетных миобластов в миокард [52]. Коннексин 43 напрямую усиливает межклеточную коммуникацию между миобластами и взрослыми крысиными кардиомиоцитами, при этом увеличивается количество щелевых контактов и опосредованная ими проводимость между клетками [53]. Интересно, что скелетные миобласты сами по себе обладают определенным уровнем экспрессии Сх43 [54], специфичного для кардиомиоцитов, однако после прекращения деления и дифференцировки миобластов в мышечные трубочки, этот белок исчезает. Таким образом, дифференцировавшись, скелетный миобласт может терять функциональную связь с клетками миокарда [55—57]. Впрочем, возможно, такая потеря экспрессии Сх43 и уменьшение числа щелевых контактов не является обязательным событием, а происходит из-за стресса при трансплантации, повреждения клеток вокруг трансплантата и т.д. В частности, показано, что сокультивирование с кардиомиоцитами усиливает экспрессию Сх43 в миобластах [58]. При этом между кардиомиоцитами и миобластами образуются функциональные контакты, появляется электропроводимость и возможен обмен различными медиаторами, включая Са2+ [57, 58].

Многих проблем, связанных с интеграцией в сердце таких достаточно специализированных клеток, как миобласты, можно избежать, используя стволовые клетки, поскольку они более пластичны и могут дифференцироваться в кардиомиоциты. Возможность формирования межклеточных контактов на основе Сх43 между кардиомиоцитами и различными типами стволовых клеток также была показана как in vivo, так и в моделях сокультивирования.

Например, ММСК способны связываться как друг с другом через Сх43 и Сх40, так и с другими сокультиви-руемыми клетками [59], в частности культивируемыми взрослыми кардиомиоцитами. В работе V. Valiunas и соавт. (2004) показано, что человеческие ММСК формируют гетеромерные каналы из двух типов коннек-синов с кардиомиоцитами собаки, причем эти контакты обеспечивают достаточное электрофизиологическое сопряжение клеток [59].

Более того, человеческие ММСК оказались способны восстанавливать проводимость между двумя отдельными полями культивируемых кардиомиоцитов [60]. В монослое сокращающихся неонатальных кардиомиоцитов крысы, физически разделенных на два поля и сокращающихся асинхронно, при добавлении ММСК восстанавливалась электрическая проводимость и сокращение синхронизировалось. Обнаружено, что ММСК, помещенные к двум группам кардиомиоцитов, образовывали функциональные щелевые контакты как между собой, так и с кардиомиоцитами. При этом через ММСК происходила передача импульса за счет ионных токов через коннексиновые каналы, хотя и более медленная, чем в кардиомиоцитах. Недавняя работа М. Gallo и соавт. (2007) подтверждает наличие щелевых контактов на основе Сх43 в совместной культуре ММСК и кардиомиоцитов, причем этот кардиоспецифичный коннексин выявлялся как в контактах ММСК/ММСК, так и в контактах ММСК/кардиомиоцит [61 ]. При этом между клетками наблюдались потенциал-зависимые кальциевые сигналы, однако, сами ММСК не обладали способностью к сокращению, и в них не выявлялись миофибриллы. Таким образом, формирование щелевых контактов и электропроводимость между кардиомиоцитами и стволовы-ми/прогениторными клетками выявляются многими исследователями, однако дифференцировка стволовых клеток в кардиомиоциты зависит, вероятно, и от других механизмов взаимодействия, таких, как слияние клеток или образование нанотрубочек.

Слияние клеток

Слияние клеток, то есть объединение плазматических мембран и генетического материала, является распространенным событием в ходе развития и функционирования многоклеточного организма, начиная от процесса оплодотворения яйцеклетки до образования многоядерного синцития мышечной ткани. В последнее время появился ряд работ, демонстрирующих возможность слияния стволовых клеток с нейральными предшественниками [62, 63], гепатоцитами и кардиомиоцитами [64]. Трансплантированные прогениторные клетки сердца тоже не только дифференцируются в кардиомиоциты, но и сливаются с ними в сердце, возвращая им способность к пролиферации [44]. Более того, показана возможность спонтанного слияния неонатальных кардиомиоцитов с различными типами стволовых и прогениторных клеток: эндотелиальными клетками пуповинной вены (HUVEC), мезенхимальными и гемопоэтическими клетками костного мозга, эндотелиальными прогениторны-ми клетками [65]. При сокультивировании кардиомиоцитов in vitro с HUVEC или фибробластами сердца происходило их слияние с образованием гетерокарио-нов, в которых наблюдалась экспрессия как маркеров кардиомиоцитов, так и клетки-партнера. Однако затем фенотип кардиомиоцита начинал преобладать. При слиянии непролиферирующие кардиомиоциты возвращались в клеточный цикл и начинали экспрессировать Ki-67 — маркер пролиферирующих клеток [65].

Аналогичные данные получены при исследовании экспрессии мРНК кардиоспецифичного р-миозина в совместной культуре неонатальных крысиных кардиомиоцитов и человеческих мононуклеаров костного мозга [64]. Клетки исследовались методом ПЦР отдельно взятой клетки (single-cell PCR), что позволило отличать трансдифференцировку клеток от слияния. Было показано, что около 6% человеческих клеток экспресна, то есть появление кардиофенотипа индуцировалось слиянием. Однако около 9% клеток экспрессировало истинная трансдифференцировка. Похожие данные получены на гемопоэтических клетках [66, 67]. В этих исследованиях появление кардиомиоцитов из стволовых клеток путем слияния было либо очень редким явлением [66], либо происходило наравне с истинной трансдифференцировкой, не связанной со слиянием [67].

Таким образом, несмотря на появление значительного числа исследований по слиянию стволовых клеток с кардиомиоцитами, этот механизм нельзя считать основным путем регенерации миокарда при клеточных трансплантациях, поскольку многие современные работы указывают на наличие дифференцировочной пластичности стволовых клеток, не основанной на слиянии.

Источник: genescells.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.