Механизм франка старлинга


Синонимы: закон сердца, закон Старлинга (Стерлинга), Starling’S Law., закон Франка-Старлинга-Штрауба , O.Frank (1895) — E.H.Starling, (1918).

Закон Франка-Старлинга – это реализация принципов гетерометрической регуляции на уровне камеры сердца.

Фундаментальный закон влияния преднагрузки на внешнюю работу сердца был установлен, детально изучен и обоснован немецким физиологом Отто Франком 1895 г. в опытах на лягушках.

Otto Frank, German physiologist, born June 21, 1865, Gross-Umstadt, Hessen; died 1944.

После опытов на млекопитающих английский физиолог Эрнест Генри Старлинг окончательно сформулировал и опубликовал этот закон в 1912-1914 гг. и представил его в лекциях в 1915 г. Особенно известен доклад Э.Старлинга 1918 года, в котором он ссылается на работы О.Франка (1895 год) и некоторые данные собственных исследований на сердечно-лёгочном препарате .


Механизм франка старлинга

Ernest Henry Starling

British physiologist,born April 17, 1866, London; died May 2, 1927, on a ship near Kingston Harbour, Jamaica

Название «закона сердца» зависимость Франка-Старлинга получила с лёгкой руки Y.Henderson.

Оригинальная формулировка: В определённых физиологических пределах, увеличение объёма сердца увеличивает энергию его сокращений и степень химического обмена при каждом сокращении.

Современная интерпретация: В определенных физиологических пределах существует прямая линейная зависимость между увеличением преднагрузки (КДО) и ударной работой сердца.


Поскольку УО сердца — это одна из составляющих ударной работы, то можно предположить, что при АД — const, зависимость между КДО и УО подчиняется тем же закономерностям. Таким образом, величина КДО является одной из важнейших характеристик, влияющих на УО.

Эта зависимость представлена на рис. 811092041. 

Механизм франка старлинга

Рис. 811092041. Механизм Франка – Старлинга.

Угол наклона кривой относительно оси абсцисс зависит от сократимости желудочка (рис. 811101621).

Механизм франка старлинга

Рис. 811101621.  Семья кривых Франка – Старлинга. Изменения инотропии и постнагрузки сдвигают кривую вверх или вниз.

Для каждой отдельной зависимости Старлинга, сократимость — величина постоянная.

Оптимальные условия работы сердца находятся вблизи перехода графической зависимости в плато, когда сердце работает с максимальной эффективностью, но дальнейшее повышение КДО может превысить компенсаторные резервы.


Превышение резерва сократимости (например, перерастяжение сердца избыточным объёмом) ведёт к переходу на другую функциональную кривую с более низкой сократимостью.

Кривая Старлинга никогда не «изгибается» книзу, сердце при этом переходит в другое инотропное состояние и зависимость ударной работы от КДО уже характеризуется другой функциональной кривой с меньшим углом наклона.

Упрощённая трактовка закона сердца при принятии за преднагрузку ЦВД, ЛПД или КДД не всегда правомерна, но её можно использовать в клинической практике с определёнными поправками.

Один из вариантов «врачебной» интерпретации закона Франка — Старлинга: «повышение КДД повышает ударную работу до максимальных значений».

Ограничения этой концепции:

  • во многих важных клинических ситуациях растяжимость миокарда, а следовательно соотношения КДО и КДД не постоянны;

  • при постоянном КДО ударный объём может изменяться в связи с обратной линейной зависимостью фракции изгнания от постнагрузки;


  • функционирование сердца в режиме, когда прирост КДО не сопровождается дальнейшим увеличением ударной работы (выход на «плато»), трудно контролируемо и возможна перегрузка сердца с дальнейшим переходом на более пологую функциональную кривую.

  • изменения сердечного выброса могут быть связаны с «движением» вдоль одной функциональной кривой, либо с переходом с одной кривой на другую.

Клинический подход: для оптимизации насосной функции и работы сердца при данной сократимости, КДД должно приближаться к значениям, обеспечивающим максимальную ударную работу, но никогда не превышать значений, при которых прирост работы в ответ на повышение КДД отсутствует (выход на «плато»).

Выделим отдельные этапы в гетерометрической регуляции сердца (рис. 711041317). Для этого вспомним функциональные объёмы сердца: конечный диастолический объём (КДО), конечный систолический объём (КСО), дополнительный резервный объём (ДРО), ударный объём (УО).

Механизм франка старлинга

Рис. 711041317. Механизм гетерометрической регуляции работы сердца. Объяснение в тексте.

  1. Увеличение притока крови в камеру сердца.

  2. Увеличение КДО на ДРО или часть ДРО.


Если изначально КДО = КСО + УО, то при нагрузке объёмом (КДОнагр)

КДОнагр = КСО + УО + ДРО.

Волокна миокарда растягиваются на большую длину. Пассивное растяжение волокон миокарда увеличивает напряжение, развиваемое сердечной мышцей (вспомните начальный участок кривой изометрических максимумов).

  1. При сокращении миокарда выбрасывается УОнагр бóльший предыдущего.

УОнагр > УО 

  1. КСО несколько увеличивается.

При гетерометрической регуляции выполняется большая работа, поскольку увеличивается выбрасываемый сердцем объём крови. Вспомним, чему равна работа (А) по перемещению объёма (Q) крови против давления (P)?

А = Q  P

При нагрузке объёмом (Q нагр) выполняется работа:

Анагр = Q нагр  P

Поскольку Q нагр > Q, тогда и А нагр  > А.

P = const.

На рис.811110809 гетерометрическая регуляция миокарда показана с использованием петли «объём-давление».

Механизм франка старлинга

Рис.811110809. Гетерометрическая регуляция на петле «объём-давление».


Механизм франка старлинга При формулировании закона сердца Франка-Старлинг допускается много неточностей.

В учебнике приводится следующая формулировка закона Франка‑Старлинга: «Сила сокра­щения сердца (миокарда) пропорциональна степени его кровена­полнения в диастолу (степени растяжения), т.е. исходной длине его мышечных волокон».

Часто студенты искажают смысл этой формулировки следующим образом: «сила сокра­щения миокарда пропорциональна степени его кровена­полнения в диастолу». Автор имел в виду не кровенаполнение миокарда, а кровенаполнение камер сердца.

Использование понятия «сила сокращения» в данном случае традиционно и вполне допустимо, хотя и менее точно, чем использование понятия «внешняя рабо­та».

Источник: diplomconsult.ru

Механизм работы сердца[править | править код]


В отличие от скелетных мышц, невозможно вызвать произвольное сокращение сердечной мускулатуры. Одной из важнейших характеристик сердечных мышц является так называемый автоматизм сокращений. Именно поэтому сердце продолжает сокращаться вне организма человека, т. к. возбуждающие потенциалы формируются в самом сердце. Первичным центром формирования потенциалов действия является синусовый (синоатриальный) узел. В норме в нем возникает возбуждение с частотой примерно 60-90 импульсов в минуту. Из синусового узла возбуждение распространяется радиально через предсердия в атриовентрикулярный узел (АВ-узел), где проведение возбуждения несколько замедляется. Затем возбуждение достигает пучка Гиса, где по ножкам переходит в желудочки в волокна Пуркинье. При нарушении работы синусового узла его функцию берет на себя АВ-узел, генерирующий импульсы с частотой 40-60 в минуту (Maurer, 2006; Рис. 1).

"Внимание" Запомните: Собственная частота синусового (синоатриального) узла составляет 60-90 импульсов в минуту, а АВ-узла — 40-60 импульсов в минуту.

Электрокардиограмма[править | править код]

Формирование возбуждения, его распространение и затухание в различных областях сердца происходит при разности потенциалов в возбужденных и невозбужденных клетках, равной 120 мВ. Эта разность потенциалов может быть зарегистрирована на поверхности тела с помощью электродов, установленных на определенные точки отведения, что позволяет получить картину распространения возбуждения в сердце.


Отведения электрокардиограммы (ЭКГ) имеют определенную форму, которая связана с функцией сердца — выделяют постоянные волны, интервалы и зубцы. Расстояние между двумя соседними зубцами R называется сердечным циклом (Рис. 2).

Частота сердечных сокращений[править | править код]

В ответ на 60-90 потенциалов действия, возникающие в покое в синусовом узле, в миокарде происходят мышечные сокращения с различной частотой в минуту. При снижении частоты сердечных сокращений ниже 60 в минуту говорят о брадикардии (De Marees, 2003), а при повышении выше 100 в минуту, например, при физической нагрузке, — о (нагрузочной) тахикардии.

Нервы сердца[править | править код]

Автономная работа сердца регулируется симпатическими и парасимпатическими волокнами (вегетативной нервной системы), следующими от центров сердечно-сосудистой деятельности через спинной мозг к сердцу. За счет возбуждающего действия симпатической системы и тормозящего действия парасимпатической системы регулируется работа сердца в зависимости от потребностей организма в кислороде. В нервных окончаниях высвобождаются вещества — переносчики сигнала, нейротрансмиттеры, которые стимулируют передачу сигнала на клетки сердечных мышц. К нейротрансмиттерам относят норадреналин и в меньшей степени адреналин для симпатической нервной системы и ацетилхолин для парасимпатической. Механизм их действия заключается в связывании со специфическими адренергическими или холинергическими рецепторами.

Запомните:


Вегетативная нервная система

Нейромедиатор

Эффекты

Симпатическая

Норадреналин,

адреналин

Хронотропный (частота),

ионотропный (сила)

и дромотропный (проводимость)

Парасимпатическая

Ацетилхолин

Нервы сердца не могут вызывать изолированные сердечные сокращения из-за механизмов автоматии, однако оказывают на функцию сердца различные влияния. Выделяют три вида влияний на сердце:

  • хромотропное действие — влияние на частоту сердечных сокращений;
  • ионотропное действие — влияние на силу сердечных сокращений;
  • дромотропное действие — влияние на скорость проведения возбуждения (проводимость).

Механизмом симпатической регуляции частоты сердечных сокращений является повышение частоты генерации импульсов в синусовом узле и ускорение проведения возбуждения в АВ-узле. Кроме этого, при активации симпатической системы повышается сила сердечных сокращений.
рицательный ионотропный эффект парасимпатической системы выражен очень мало, т. к. она иннервирует только предсердия и не влияет на желудочки. Частота сердечных сокращений при отсутствии влияний нервной системы составляет 100-120 ударов в минуту, а фактическая меньшая частота в покое объясняется преобладанием парасимпатических влияний на синусовый узел. Активность симпатической и парасимпатической системы также называют тонусом. Если после периода отдыха при физической нагрузке необходимо быстрое повышение частоты сокращений, вначале происходит уменьшение парасимпатического тонуса. Для дальнейшего увеличения частоты (> 120 ударов в минуту) и ударного объема необходимо повышение симпатического тонуса.

Запомните: Парасимпатическая система иннервирует только предсердия и не влияет на желудочки.

Электромеханическое сопряжение[править | править код]

Потенциалы действия сердечных мышц в покое отличаются значительно большей длительностью, чем потенциалы действия скелетной мускулатуры — 200 мс по сравнению с 1-2 мс. Это объясняется тем, что, в отличие от нервов или скелетных мышц, при возникновении потенциала действия в сердце помимо быстрого тока через Nа+-каналы открываются медленные Са2+-каналы, которые с большой задержкой прекращают ток ионов. В результате этого возникают длинная фаза плато (Рис. 3) и удлиненная фаза рефрактерности (время, в течение которого невозможно новое возбуждение). Удлинение потенциала действия играет роль защиты от так называемых циркулирующих волн возбуждения и тетанических сокращений (постоянное сокращение).

В отличие от скелетных мышц, в сердце невозможно суммирование мышечных сокращений (суперпозиция). Сердце представляет собой одну большую моторную единицу, поэтому невозможно повышение силы сокращений за счет привлечения других моторных единиц, находящихся в состоянии покоя, как в скелетных мышцах. Тем не менее сокращения сердца все же подобны работе скелетной мускулатуры. Ключевую роль в электромеханическом сопряжении играют ионы Са2+. Входной поток ионов Са2+ или норадренергическая стимуляция через β-адренорецепторы приводят к высвобождению ионов Са2+ из продольных трубочек саркоплазматического ретикулума, которые присоединяются к тропонину С и приводят к образованию мостовидных связей между актином и миозином (Maurer, 2006). После сокращения ионы Са2+ вновь выводятся во внеклеточное пространство Nа+-Са2+-насосом или специфическими Са2+ -насосами (SERCA — саркоэндоплазматический ретикулум Са-АТФаза) в саркоплазматический ретикулум. Продолжительность сокращения зависит от длительности потенциала действия, а сила сокращений — от концентрации Са2+ в цитоплазме во время этой фазы. Таким образом, вещества, влияющие на входной поток Са2+, могут изменять силу сердечных сокращений. К таким веществам, например, относится адреналин, который увеличивает поток ионов Са2+ в цитоплазму (Tortora, Derrickson, 2006).

Запомните: Под периодом рефрактерности понимают время, в течение которого невозможно новое сокращение. Рефрактерность является защитным механизмом против тетанических сокращений для обеспечения насосной функции сердца. Ключевую роль в электромеханическом сопряжении играют ионы Са2+.

Этим объясняется механизм регуляции сердечной деятельности симпатической нервной системой. Механизм парасимпатической регуляции заключается в выведении К+ из клетки, что приводит к накоплению отрицательного заряда с внутренней стороны клеточной мембраны и затруднению деполяризации и формирования потенциала действия.

Ударный объем[править | править код]

Объем крови (в миллилитрах), выбрасываемый во время одной систолы из левого желудочка, называется ударным объемом. В покое он составляет приблизительно 70-100 мл и сильно зависит от положения тела. В положении лежа улучшается диастолическое наполнение сердца, в то время как повышение ударного объема в ответ на физическую нагрузку оказывает меньшее влияние. Ударный объем зависит от следующих факторов:

1) преднагрузки — давления наполнения в конце диастолы;

2) постнагрузки — давления в сосудах, отходящих от сердца;

3) силы сокращений сердца.

Сердечный цикл[править | править код]

Сердце работает по принципу помпы. Выделяют две фазы функции сердца — фазу сокращения (систола) и фазу расслабления (диастола). Диастола в покое практически в 2 раза длиннее систолы, а при физической нагрузке это соотношение становится обратным. В систоле выделяют фазы напряжения (около 50 мс) и изгнания (210 мс), а в диастоле — фазы расслабления (60 мс) и наполнения (500 мс). Для поддержания тока крови из вен в предсердия, желудочки и затем в артерии предсердия и желудочки сокращаются попеременно. Таким образом, систола предсердий происходит во время диастолы желудочков и заканчивается перед их систолой. При этом клапаны сердца закрываются и предотвращают обратный ток крови. Открытие и закрытие клапанов обусловлено их анатомическим строением и разницей давлений на обеих сторонах клапана. Во время фазы напряжения давление в желудочках повышается, что приводит к закрытию створчатых клапанов. При этом полулунные клапаны остаются закрытыми, т. к. объем желудочка не изменяется, однако, если давление в левом желудочке превышает давление в аорте, полулунный клапан аорты пассивно открывается. В этот момент начинается фаза изгнания, при которой объем желудочка уменьшается на ударный объем. В эту фазу артериальное давление повышается до максимального систолического давления (справа: около 20-25 мм рт. ст.; слева: около 120 мм рт. ст.). Около 60 % крови из конечного диастолического объема в покое выбрасывается как ударный объем, а остаток называется остаточным объемом. Доля ударного объема в процентном соотношении от конечного диастолического объема называется фракцией выброса. В начале диастолы все клапаны закрыты, благодаря чему повышается внутрижелудочковое давление. По этой причине фаза расслабления в начале диастолы называется изоволюметрической, т. е. объем камер сердца не изменяется. Когда давление в желудочках превышает давление в предсердиях, открываются створчатые клапаны и происходит опорожнение желудочков. В конце диастолы желудочков происходит сокращение предсердий. Наполнение желудочков происходит преимущественно за счет механизма сдвига клапанов. Во время систолы желудочков клапаны сердца сдвигаются к верхушке сердца, при этом кровь засасывается в предсердия. Во время диастолы желудочков клапаны вновь смещаются к предсердиям, при этом клапаны открываются и кровь поступает в желудочки. Фазы, при которых не происходит изменения объема камер, протекают относительно быстро (50-60 мс), а фазы с изменением давления и объема — значительно медленнее.

Механизм Франка—Старлинга[править | править код]

При изменении венозного оттока к правому отделу сердца вследствие различных факторов (например, изменения положения тела) благодаря механизму Франка—Старлинга происходит изменение ударного объема для сохранения постоянства тока крови в малом и большом кругах кровообращения. При этом выравнивается разница в ударных объемах между правой и левой половинами сердца. Этот механизм описывает зависимость силы сердечных сокращений от растяжения сердечной стенки. Повышение ударного объема происходит без участия вегетативной нервной системы (экстракардиальная система), поэтому он называется интракардиальным адаптационным механизмом.

Источник: beta.sportwiki.to

· Количество крови, перекачиваемое сердцем каждую минуту, практически полностью зависит от поступления крови в сердце из вен, обозначаемого термином «венозный возврат». Присущую сердцу внутреннюю способность приспосабливаться к изменениям объёмов притекающей крови называют механизмом (законом) Франка–Старлинга: чем больше мышца сердца растянута поступающей кровью, тем больше сила сокращения и тем больше крови поступает в артериальную систему. Таким образом, наличие в сердце саморегуляторного механизма, определяемого изменениями длины мышечных волокон миокарда, позволяет говорить о гетерометрической саморегуляции сердца.

Гетерометрическая саморегуляция — наличие в сердце саморегуляторного механизма, определяемого изменениями длины мышечных волокон миокарда».

Гомеометрический механизм регуляции сердечной деятельности (в отличие от гетерометрического механизма) изменяет силу сокращения миокарда на фоне неизменённой исходной (то есть диастолической) длины мышечных волокон миокарда, при сохранении постоянного притока венозной крови. Другими словами, сердце усиливает сокращение, например, при резком повышении давления в аорте, а венозный приток не меняется.

· В эксперименте эффект изменений величины венозного возврата на нагнетательную функцию желудочков демонстрируется на так называемом сердечно-лёгочном препарате. .

· Изолированные сердце и лёгкие соединяют канюлями и трубками таким образом, что кровь из аорты через систему трубок и резервуаров поступает в правое предсердие, а оттуда через сердце и лёгкие — снова в аорту. Если в резервуаре, снабжающем кровью правое предсердие, количество крови увеличивается, то венозное давление и венозный возврат увеличиваются. Переполненный желудочек растягивается, и сердечный выброс возрастает.

· Сердечно-лёгочный препарат демонстрирует также воздействие изменений периферического сопротивления (постнагрузки) на насосную функцию сердца. Уменьшение калибра трубочки, отводящей кровь из аорты, увеличивает периферическое сопротивление. На фоне увеличенного периферического сопротивления сердце изгоняет крови меньше, чем оно её получает. Кровь накапливается в желудочках, размеры которых увеличиваются. В итоге растянутые желудочки сокращаются интенсивнее, и сердечный выброс возвращается к прежнему уровню.

· Молекулярный механизм эффекта Франка–Старлинга заключается в том, что растяжение миокардиальных волокон создаёт оптимальные условия взаимодействия филаментов миозина и актина, что позволяет генерировать сокращения большей силы.

· Факторы, регулирующие конечно-диастолический объём в физиологических условиях

Растяжение кардиомиоцитов увеличивается под влиянием повышения: силы сокращений предсердий, общего объёма крови, венозного тонуса (также повышает венозный возврат к сердцу); насосной функции скелетных мышц (для передвижения крови по венам — в итоге увеличивается венозный возврат; насосная функция скелетных мышц всегда увеличивается во время мышечной работы); отрицательного внутригрудного давления (также увеличивается венозный возврат).

Растяжение кардиомиоцитов уменьшается под влиянием: вертикального положения тела (вследствие уменьшения венозного возврата); увеличения внутриперикардиального давления; уменьшения податливости стенок желудочков.

Дополнительно к эффекту растяжения сердечной мышцы, вызванному увеличенным объёмом, имеется еще другой фактор, повышающий нагнетательную функцию сердца. Растяжение стенки правого предсердия непосредственно увеличивает ЧСС на 10–20%, способствуя возрастанию минутного объёма сердца.

· Постэкстрасистолическая потенциация. Изменение ритма сердца может воздействовать на сократимость миокарда и насосную функцию сердца без изменения длины кардиомиоцитов. Желудочковые экстрасистолы изменяют состояние миокарда таким образом, что последующие сокращения более сильны, чем нормальные предыдущие сокращения. Постэкстрасистолическая потенциация не зависит от наполнения желудочков, поскольку она может возникать в изолированной сердечной мышце в результате повышения содержания внутриклеточного Ca2+. Устойчивое увеличение сократимости может быть вызвано нанесением парных электрических стимулов на сердце, когда второй стимул следует тотчас после окончания рефрактерного периода от первого.

Влияние симпатического и блуждающего нервов на насосную функцию сердца

Эффективность насосной функции сердца контролируется импульсами симпатического и блуждающего нервов.

· Симпатические нервы. Возбуждение симпатической нервной системы может повысить ЧСС с 70 в минуту до 200 и даже до 250. Симпатическая стимуляция увеличивает силу сокращений сердца, повышая тем самым объём и давление выкачиваемой крови. Симпатическая стимуляция может повысить производительность сердца в 2–3 раза дополнительно к росту минутного объёма, вызванного эффектом Франка–Старлинга. Торможение симпатической нервной системы может быть использовано для снижения насосной функции сердца. В норме симпатические нервы сердца постоянно тонически разряжаются, поддерживая более высокий (на 30% выше) уровень производительности сердца. Поэтому если симпатическая активность сердца будет подавлена, то, соответственно, снизятся частота и сила сокращений сердца, что приводит к понижению уровня насосной функции не менее чем на 30% ниже нормы.

· Блуждающий нерв. Сильное возбуждение блуждающего нерва может на несколько секунд полностью остановить сердце, однако затем сердце обычно «ускользает» из-под влияния блуждающего нерва и продолжает сокращаться с более редкой частотой — на 40% реже, чем в норме. Стимуляция блуждающего нерва может уменьшить силу сокращений сердца на 20–30%. Волокна блуждающего нерва распределены главным образом в предсердиях, и их мало в желудочках, работа которых определяет силу сокращений сердца. Это объясняет тот факт, что влияние возбуждения блуждающего нерва сказывается больше на уменьшении ЧСС, чем на снижении силы сокращений сердца. Однако заметное уменьшение ЧСС вместе с некоторым ослаблением силы сокращений могут снижать до 50% и более производительность сердца, особенно когда сердце работает с большой нагрузкой.

• Необходимый исходный уровень знаний:

1. Механизмы лежащие в основе процессов сопряжения возбуждение- сокращение- расслабление кардиомиоцитов;

2. Иннервацию сердца и историю изучения влияния вегетативной нервной системы на работу сердца;

3. Медиаторы симпатической и парасимпатической нервной системы;

4. Интерпретацию процессов лежащих в основе изменения физиологических свойств сердечной мышцы;

План проведения занятия:

1. Вводное слово преподавателя о цели занятия и схеме его проведения. Ответы на вопросы студентов — 30 минут.

2. Устный опрос — 60 минут.

3. Учебно-практическая и исследовательская работа студентов — 150 минут.

Вопросы для самоподготовки к занятию:

1. Эфферентные механизмы регуляции сердечной деятельности (миогенные, нервные, гуморальные).

2. Механизмы гомеометрической саморегуляции деятельности сердца.

3. Механизмы гетерометрической саморегуляции деятельности сердца.

4. Эфферентная иннервация сердца. Характеристика влияний парасимпатических нервов и их медиаторов на деятельности сердца.

5. Характеристика влияний симпатических нервов и их медиаторов на деятельности сердца.

6. Рефлекторная регуляция деятельности сердца.

7. Гуморальная регуляция деятельности сердца.

Учебно-практическая и исследовательская работа:

Источник: studopedia.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.