Основные законы гемодинамики физиология



Гемодинамика – раздел физиологии, изучающий причины, условия и механизмы движения крови в сердечно-сосудистой системе.

Движение крови по кровеносным сосудам подчиняется законам гемодинамики. В свою очередь, их можно рассматривать, как частный случай гидродинамики. Т.е. в основе законов движения крови лежат физические законы движения жидкости (воды) по сосудам (имеются в виду, не кровеносные сосуды)

Основным условием кровотока, как и в гидродинамике, является градиент давления между начальными и конечными отделами системы сосудов.

Давление в кровеносных сосудах создается работой сердца. Благодаря его насосной деятельности создается давление крови, которое способствует ее продвижению по сосудам. Во время систолы желудочков порции крови выбрасываются в аорту и легочные артерии под определенным давлением, что приводит к увеличению давления и растяжению эластических стенок сосудистого бассейна. Во время диастолы растянутые кровью артериальные сосуды сокращаются и проталкивают кровь к капиллярам, поддерживая тем самым, необходимое давление.


овь течет из области высокого, в область низкого давления. При движении ей приходится преодолевать сопротивление, создаваемое, трением частиц крови друг о друга, т.е. внутреннее трение, а так же трением частиц крови о стенки сосудов, т.е. внешнее трение. По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается. Особенно быстро снижается давление в артериолах и капиллярах, т.к. они обладают большим сопротивлением, имеют малый радиус, большую суммарную длину, многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Основной закон гемодинамики. В соответствии с законами гидродинамики количество жидкости (крови), протекающей через поперечное сечение сосуда (Q), за единицу времени (мл/с) или объемная скорость кровотока (Q) прямо пропорциональна разности давления в начале (Р1) сосудистой системы, т.е. в аорте, и в ее конце (Р2), т.е. полых венах, и обратно пропорциональна сопротивлению(R) току крови.

Q= (P1 — P2) / R,

где, Q – объемная скорость крови;

Р1 – давление в аорте;

Р2 – давление в полых венах;

Р12 – разность давлений, имеющаяся в начале и в конце сосудистой системы, обеспечивает продвижение крови и способствует непрерывному кровотоку. Учитывая, что давление в полых венах равно 0, имеем:


Q=Р/R, где

Р – давление в аорте. Следовательно, Р=QR.

В данном случае Q – это минимальный объем кровотока, который зависит только от насосной функции сердца и определяется по формуле:

МОК= СО х ЧСС,

Где СО – систолический объем;

ЧСС – частота сердечных сокращений.

Т.о. МОК – это количество крови, протекающее в единицу времени (1мин) через поперечное сечение какого-либо участка кровеносного русла. Подставляя его в формулу расчета давления, имеем

Р = СО х ЧСС х R

В связи с замкнутостью кровеносной системы объемная скорость кровотока во всех его отделах (всех артериях, всех капиллярах, всех венах) одинакова и составляет 4-6 л/ мин.

Теперь необходимо определить и выразить R.

R – сопротивление в кровеносном сосуде, его можно определить по формуле Пуазейля: R=8lη/πr4, где

где l – длина сосудов;

η – вязкость крови;

π – константа (число), показывающее отношение окружности к диаметру, всегда равна 3,14;

r – радиус сосуда.

Т.е. сопротивление зависит от длины сосудов, вязкости крови (которая в 5 раз больше вязкости воды), радиуса сосуда. Длина сосуда постоянна, радиус и вязкость – переменные величины. Вязкость крови определяется содержанием в крови форменных элементов, преимущественно эритроцитов и белков, т.е. гематокритом. При уменьшении количества эритроцитов (при анемии) вязкость крови низкая, сопротивление уменьшается. При увеличении количества эритроцитов (эритроцитоз) вязкость крови увеличиваются, сосудистое сопротивление становится выше. Однако, несмотря на то, что вязкость – это переменная величина, организм тем не менее, не имеет возможности изменять ее быстро. Т.е. с точки зрения быстроты регуляции давления вязкость так же можно считать константой. Убирая из формулы Пуазейля все константы, получаем


R ~ 1/r4.

Эта формула показывает, что сопротивление току крови обратно пропорциональна радиусу. Например, чем больше радиус, тем меньше сопротивление.

Обратим внимание, что математическому (физическому) понятию радиуса в физиологии соответствует понятие тонуса сосуда. Эти величины обратно пропорциональны, например, если тонус сосуда увеличивается (гладкомышечные клетки стенок сосуда сокращаются), то его радиус уменьшается, а сопротивление току крови при этом возрастает.

Тонус сосуда ~ 1/r

R ~ (тонус сосуда)4

Причем, зависимость R от радиуса (тонуса) сосуда сильная, в формуле радиус находится в четвертой степени. Значит, даже незначительное изменение радиуса сосудов будет сильно влиять на сопротивление току крови и, следовательно, на давление в сосуде.

Подставляя выражение R в формулу расчета артериального давления, имеем

Р = СО х ЧСС/r4

Эту формулу можно считать базовой для гемодинамики, по крайней мере, для расчета значения давления в магистральных артериях. В клинике именно давление в крупных артериях называют артериальным давлением.


Полученная формула весьма информативна. Она в частности, показывает, какие возможности имеет организм, чтобы быстро изменить артериальное давление. Он может изменить три параметра: СО, ЧСС и r. При этом понятно, что наиболее выражено давление будет меняться при изменении тонуса сосудов (r в четвертой степени).

Кроме того, на основе формулы понятно, что артериальное давление в основном зависит от работы двух систем организма сердца и сосудов. При этом сердце, благодаря своей насосной функции, формирует некий общий уровень давления (МОК= СО х ЧСС), а для его регуляции в основном используется тонус сосудов (R ~ 1/r4.).

Можно так же утверждать, что систолическое давление в основном зависит от работы сердца и характеризует его насосную функцию. Тогда как диастолическое давление в основном определяется эластическими свойствами артерий и характеризует их тонус.

Линейная и объемная скорости кровотока.Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л. Из этого объема 80-85% крови заполняет большой круг кровообращения, около 10% малый круг кровообращения, 7% находится в сердце.

Объемная скорость кровотока – объем крови, протекающей через поперечное сечение данного отдела сосуда в единицу времени. Измеряется в мл/сек.


Объемная скорость кровотока одинакова во всех отделах сосудистой системы. Очевидно, что если в конкретный момент времени левый желудочек выбрасывает в аорту 70 мл крови, то в то же время в правое предсердие будет притекать такое же количество крови (70 мл), равно кК через капилляры будет проталкиваться объем крови, равный 70 мл. Объемная скорость за минуту соответствует МОК.

Зная объемную скорость кровотока можно рассчитать его линейную скоростьили расстояние, на которое перемещается частица крови в единицу времени, или скорость движения крови в сосудах. Измеряется в м/с.

Линейная скорость, вычисленная по формуле V=Q/π r, где

V – линейная скорость кровотока ( м/с);

Q – объемная скорость(мл/с);

π – число пи;

r – радиус поперечного сечения конкретного отдела кровеносной системы.

Если Q одинакова во всех участках кровеносной системы, то V сильно варьирует и зависит, как это следует из формулы, от суммарного радиуса всех сосудов данного участка кровеносной системы. Самым узким из них является аорта, радиус которой 2,5 см (25 мм), поэтому скорость кровотока здесь максимальна – 0,5 м/с. Наиболее широкий участок – капилляры большого круга кровообращения, суммарный радиус которых в среднем в 600 раз больше аорты (1500 мм или 15 м). Соответственно, здесь скорость кровотока падает в 600 раз и составляет 0,5-1,0 мм/с. Суммарный диаметр (радиус) обеих полых вен в 2 раза больше аорты, кровь течет в них со скоростью 25 см/с. Из формулы и приведенных цифр следует, что V связана с радиусов сосудов линейно и обратно пропорционально.


В центре сосуда линейная скорость максимальна, около стенок минимальна, т.к. велико трение частиц крови о стенку. Более того, непосредственно у стенок сосудов трение столь велико, что говорят о краевом стоянии форменных элементов, т.е. они движутся предельно медленно.

Давление в различных участках кровеносного русла.

Как и скорость кровотока, давление в сосудах обратно пропорционально их радиусу. Наиболее высоким оно оказывается в аорте и равно 140/90 мм рт. ст. 120 мм рт. ст. – систолическое давление, соответствует момента выброса СО из сердца. 90 мм рт. ст. – диастолическое давление, формируется благодаря эластическим волокнам аорты в моменты времени, когда сердце не выполняет свою насосную функцию.

Более широким участком кровеносной системы являются крупные магистральные артерии, соответственно, давление здесь чуть ниже, чем в аорте, и составляет 120/80 мм рт. ст. Еще совсем недавно такое АД, измеряемое на лучевой артерии, считалось в клинике нормальным. Однако в настоящее время, в связи с высоким общим стрессогенным фактором, характерным для современной цивилизации, гиподинамией, в которой существует большинство людей в развитом обществе, клинической нормой АД принимают 139/89 мм рт. ст.

Согласно выше определенной формуле расчета сосудистого давления – Р ~ Q/r4, оно (давление) должно линейно и обратно пропорционально зависеть от радиуса в любом участке кровеносного русла. Однако такая линейная зависимость характерна в основном только для артерий, в капиллярах и венах присутствует ряд сил, факторов, которые значимо влияют на давление, но не учитываются в данной формуле.


Радиус (диаметр) капиллярного русла в 600 раз больше аорты, следовательно, в гидродинамической системе давления в них будет снижаться в 600 раз. Тогда как гемодинамической системе давление в капиллярах падает всего в несколько раз и составляет и 10-25 мм рт. ст. Это происходит вследствие резкого увеличения сопротивления току крови в обменных сосудах. Дело в том, что диаметр отдельно взятого капилляра меньше диаметра эритроцита, который вынужден протискиваться через капилляр. При этом сила трения столь возрастает, что эритроцит, проходя через обменный сосуд, изменяет свою форму, становясь элипсовидным. Это с одной стороны, улучшает диффузию СО2 и О2, с другой – препятствует значительному падению давления в сосуде.

Диаметр полых вен в 2 раза больше аорты. Если бы стенки этих сосудов были жесткими, то давление в полых венах было бы в 2 раза ниже, чем в аорте. На самом деле давление в полых венах равно 0. Это происходит, потому что стенки полых вен, содержащие коллаген, хорошо растягиваются, не оказывая сопротивление току крови. Если R=0, то и Р=0 (Р=QR). Более того, в момент диастолы, когда сердце расслабляется, давление в полых венах становится даже отрицательным.


ворят о присасывающей функции сердца, которая облегчает возврат крови из большого круга кровообращения, уменьшая, тем самым, нагрузку на сердечную мышцу. Давление в венах меньшего диаметра, чем полые, чуть выше, чем в них, но меньше, чем в капиллярах – 5-15 мм рт. ст. Наконец отметим, что в капиллярах и венах нет пульсового давления (систолического, диастолического), т.к. нет пульсовой волны из – за отсутствия эластических волокон в стенках этих сосудов.

Источник: helpiks.org

Режимы течения крови

Режимы течения жидкости разделя­ют на ламинарное и турбулентное.Ламинарное течение — этоупорядоченное течение жидкости, при котором она перемеща­ется как бы слоями, параллельными направлению течения (рис. 9.2, а). Для ламинарного течения характерны гладкие квазипа­раллельные траектории. При ламинарном течении скорость в сечении трубы изменяется по параболическому закону:

Основные законы гемодинамики физиология

где R- радиус трубы,Z- расстояние от оси,Vo— осевая (макси­мальная) скорость течения.

С увеличением скорости движения ламинарное течение пе­реходит в турбулентное течение, при котором происходит ин­тенсивное перемешивание между слоями жидкости, в потоке возникают многочисленные вихри различных размеров.


с­тицы совершают хаотические движения по сложным траекто­риям. Для турбулентного течения характерно чрезвычайно не­регулярное, беспорядочное изменение скорости со временем в каждой точке потока. Можно ввести понятие об осредненнойскорости движения, получающейся в результате усреднения по большим промежуткам времени истинной скорости в каждой точке пространства. При этом существенно изменяются свой­ства течения, в частности, структура потока, профиль скорос­тей, закон сопротивления. Профиль осредненной скорости тур­булентного течения в трубах отличается от параболического профиля ламинарного течения более быстрым возрастаниемскорости у стенок и меньшей кривизной в центральной части течения (рис. 9.2, б). За исключением тонкого слоя около стен­ки, профиль скорости описывается логарифмическим законом. Режим течения жидкости характеризуется числом Рейнольдса Re. Для течения жидкости в круглой трубе:

Основные законы гемодинамики физиология (9.3)

где V — скорость течения, средняя по поперечному сечению, R -радиус трубы.

Основные законы гемодинамики физиология


Рис. 9.2. Профиль осредненных скоростей при ламинарном (а) и турбулентном (б) течениях

Когда значение Reменьше критическогоReKp~ 2300, имеет место ламинарное течение жидкости, еслиRe>ReKp, то тече­ние становится турбулентным. Как правило, движение кровипо сосудам является ламинарным. Однако в ряде случаев воз­можно возникновение турбулентности. Турбулентное движе­ние крови в аорте может быть вызвано прежде всего турбулен­тностью кровотока у входа в нее: вихри потока уже изначальносуществуют, когда кровь выталкивается из желудочка в аор­ту, что хорошо наблюдается при доплерокардиографии. У местразветвления сосудов, а также при возрастании скорости кро­вотока (например, при мышечной работе) течение может стать турбулентным и в артериях. Турбулентное течение может воз­никнуть в сосуде в области его локального сужения, напри­мер, при образовании тромба.

Турбулентное течение связано с допонительной затратой энергии при движении жидкости, поэтому в кровеносной сис­теме это может привести к дополнительной нагрузке на серд­це. Шум, возникающий при турбулентном течении крови, мо­жет быть использован для диагностики заболеваний. При поражении клапанов сердца возникают так называемые сердеч­ные шумы, вызванные турбулентным движением крови.

Источник: studfile.net

КРОВООБРАЩЕНИЕ— непрерывное движение крови по замкнутой системе полостей сердца и кровеносных сосудов, обусловленное сокращениями сердца, пульсирующих сосудов.

ССС — сердце и кровеносные сосуды, обеспечивающие движение крови— транспортирующая подсистема в системе кровообращения

Гемодинамика — раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе.

С позиций функциональной значимости для системы кровообращения сосуды подразделяются на следующие функциональные типы

• амортизирующие

• резистивные

• сосуды-сфинктеры

• обменные

• ёмкостные

• шунтирующие

 

Амортизирующие сосуды

• Синонимы: упруго-растяжимые.

• К амортизирующимсосудам относят аорту, легочную артерию и прилежащие к ним участки крупных сосудов.

• относятся к артериям эластического типа.

• В их средней оболочке преобладают эластические элементы.

Благодаря такому приспособлению сглаживаются возникающие во время регулярных систол подъемы артериального давления.

Резистивные сосуды

Синонимы: Сосуды сопротивления

Резистивные сосуды концевые артерии и артериолы — характеризуются толстыми гладкомышечными стенками, способными при сокращении изменять величину просвета, что является основным механизмом регуляции кровоснабжения различных органов.

Сосуды-сфинктеры

• являются последними участками прекапиллярных артериол.

• как и резистивные сосуды, также способны изменить свои внутренний диаметр, определяя тем самым число функционирующих капилляров и соответственно значение площади обменной поверхности.

Обменные сосуды

капилляры, в которых происходит обмен различных веществ между кровью и тканевой жидкостью

Различают три типа капилляров

1. соматические со сплошной эндотелиальной выстилкой и базальной мембраной

2. фенестрированные с порами в эндотелиоцитах,

а. диафрагмированные

б. недиафрагмированные

3. перфорированного типа со сквозными отверстиями в эндотелии и базальной мембране.

Основные законы гемодинамики физиология

Мкостные сосуды

Ёмкостное звено сердечно-сосудистой системы составляют посткапиллярные венулы, вены и крупные вены.

• Вены по строению сходны с артериями, но их средняя оболочка значительно тоньше.

• Они имеют также клапаны, препятствующие обратному току венозной крови.

• Вены могут вмещать и выбрасывать большие количества крови, способствуя тем самым ее перераспределению в организме.

Шунтирующие сосуды

Основные законы гемодинамики физиология находятся лишь в некоторых областях тела (кожа уха, носа, стопы и других органов) и представляют анастомозы, связывающие между собой артериальное русло с венозным (артериолы и венулы) минуя капилляры.

• Шунтирующие сосуды выполняют функцию регуляции регионарного периферического кровотока.

• Они участвуют в терморегуляции, регуляции давления крови, ее распределении.

 

Основные законы гемодинамики

• Гемодинамика (движение крови) определяется двумя факторами:

давлением ( P ), которое ока­зывает влияние на жидкость, и

Сопротивлением ( R ), которое она испытывает при трении о стенки сосудов и вихревых движениях.

• Все факторы, влияющие на кровоток, в конечном счете могут быть приближенно сведены к уравнению, сходному с законом Ома и носящему название уравнение Франка.

Основные законы гемодинамики физиология Согласно законам гидродинамики (уравнение Франка), количество жидкости (Q), протекающее через любую трубу, прямо пропорционально разности давлений в начале (P1) и в конце (Р2) трубы и обратно пропорционально сопротивлению (R) току жидкости:

 

• Если применить это уравнение к сердечно-сосудистой системе в целом, то следует иметь в виду, что давление в конце данной системы, т.е. в месте впадения полых вен в сердце, близко к нулю.

Основные законы гемодинамики физиология В этом случае уравнение можно записать так:

• где Q — количество крови, изгнанное сердцем в минуту;

Р — среднее давление в аорте,

R — общее сосудистое сопротивление.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Основные законы гемодинамики физиология

• Здесь

• ρ — плотность жидкости,

• v — скорость потока,

• h — высота, на которой находится рассматриваемый элемент жидкости,

• p — давление.

• Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых — единица энергии, приходящейся на единицу объёма жидкости.

• Это соотношение, выведенное Даниилом Бернулли в 1738 г., было названо в его честь уравнением Бернулли. Для горизонтальной трубы h = 0 и уравнение Бернулли принимает вид:

Основные законы гемодинамики физиология .
Полное давление состоит из весового (ρgh), статического (p) и динамического ( Основные законы гемодинамики физиология ) давлений.

• Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

• Из закона Бернулли следует, что при уменьшении сечения потока возрастает скорость (то есть динамическое давление) и падает статическое давление

• С помощью уравнения Д.Бернулли в клинике при допплерографическом исследовании оценивают градиент давления в сердечно‑сосудистой системе.

 

Режимы течения крови

• ламинарное

• турбулентное

Ламинарное течение — это упорядоченное течение жидкости, при котором она перемещается как бы слоями, параллельными направлению течения

• Для ламинарного течения характерны гладкие квазипараллельные траектории.

• При ламинарном течении скорость в сечении трубы изменяется по параболическому закону:

Основные законы гемодинамики физиология Основные законы гемодинамики физиология где R — радиус трубы,

Z — расстояние от оси,

Vo — осевая (максимальная) скорость течения.

• С увеличением скорости движения ламинарное течение переходит в турбулентное течение, при котором происходит интенсивное перемешивание между слоями жидкости, в потоке возникают многочисленные вихри различных размеров.

• Частицы совершают хаотические движения по сложным траекториям.

• Для турбулентного течения характерно чрезвычайно нерегулярное, беспорядочное изменение скорости со временем в каждой точке потока.

Основные законы гемодинамики физиология Можно ввести понятие об осредненной скорости движения, получающейся в результате усреднения по большим промежуткам времени истинной скорости в каждой точке пространства

• Профиль осредненной скорости турбулентного течения в трубах отличается от параболического профиля ламинарного течения более быстрым возрастанием скорости у стенок и меньшей кривизной в центральной части течения.

 

Основные законы гемодинамики физиология Сопротивление кровотоку

• Где W – гидравлическое сопротивление,

• h — вязкость жидкости,

• l – длина трубки,

• R – радиус трубки

Общее сопротивление последовательно соединённых трубок:

R общ. = R1 + R2 + R3+ … + Rn

Общее сопротивление параллельно соединённых трубок:

1/R общ. = 1/R1 + 1/R2 + 1/R3+ … + 1/Rn

 

 

Источник: cyberpedia.su


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.