Центральная гемодинамика это


Показатели гемодинамики

Кровяное давление и сопротивление кровотоку — это фундаментальные гемодинамические факторы, которые определяют тканевое, органное и системное кровообращение. Оценку этих факторов используют для характеристики физиологического состояния сердечно-сосудистой системы.

Поток крови (Q) прямо пропорционален перепаду давления (ДР) и обратно пропорционален сопротивлению тока крови (R): Q – A P/R.

Например, минутный объем сердца, который является мерой потока крови от сердца, прямо пропорционален артериовенозной разнице давлений в системном кровотоке и обратно пропорционален общему периферическому сопротивлению сосудов.

Давление и потоки крови могут быть непосредственно измерены с помощью различных инструментов: аппарат Короткова позволяет определить системное артериальное давление, а катетеризация сосудов или камер сердца – кровяное давление и объемную скорость кровотока.

Кроме того, общее периферическое сосудистое сопротивление может быть вычислено на основании данных об объеме сердечного выброса, среднем уровне артериального давления и уровне системного венозного давления (см.ниже). Основные гемодинамические показатели и их значения представлены в таблице.

Таблица – Гемодинамические показатели сердечно-сосудистой системы



Показатели   Сокращенные  обозначения  показателей Нормальные значения
Ударный объем УО 60,0—100,0 мл
Сердечный выброс

(син.: минутный объем сердца)

СВ (МОС) 4,0—6,0 л/мин
Сердечный индекс СИ 2,5—3,6 л/мин/м2
Фракция выброса ФВ 55-75%
Центральное венозное давление ЦВД 40—120 мм вод. ст
Диастолическое давление в легочной артерии ДДЛА 9—16 мм рт.ст.
Давление в левом предсердии ДЛП 1-10 мм рт.ст.
Давление заклинивания легочной артерии ДЗЛА 6—12 мм рт.ст.
Диастолическое давление в аорте ДДА 70—80 мм рт.ст.

Системное артериальное давление: Артериальное давление систолическое Артериальное давление диастолическое САД
АД систол.
АД диаст.
100—139 мм рт.ст.

60—89 мм рт.ст.

Артериальное давление (среднее) АД средн. 70—105 мм рт.ст.
Общее периферическое сосудистое сопротивление ОПСС 1200—1600 дин-с-см-5
Легочное сосудистое сопротивление ЛСС 30—100 дин-с-см’5
 Показатель сократимости миокарда (определяется в фазу изоволюмического сокращения)  dp/dt макс  мм рт.ст./с
 Показатель расслабляемости миокарда (определяется в фазу изоволюмического расслабления)  dp/dt макс  мм рт.ст./с
 Частота сердечных сокращений  ЧСС  60—70 уд. /мин (муж.);

70—80 уд./мин (жен.)

Ударный объем

Ударный объем (УО) — это объем крови, поступающий в аорту во время одной систолы (одного цикла сокращения) левого желудочка. УО представляет собой разницу между конечно- диастолическим объемом (КДО) и конечно-систолическим объемом (КСО) крови в левом желудочке: УО = (КДО – КСО) мл.

Сердечный выброс

Сердечный выброс (СВ) (наряду с СВ нередко используют понятие «минутный объем сердца» — МОС). Если наполнение желудочков поддерживается на достаточном уровне, то величина сердечного выброса при любом ударном объеме зависит от частоты сердечных сокращений (ЧСС). Формула расчета: СВ или МОС= (УО • ЧСС) л/мин. Таким образом, СВ является функцией УО и ЧСС. Увеличение СВ при тахикардии требует более эффективного диастолического наполнения сердца.

При увеличении частоты сердечных сокращений относительное время диастолы уменьшается по сравнению с продолжительностью систолы. Однако в нормально функционирующем сердце, которое сокращается в пределах 170 уд/мин, его наполнение не уменьшается в связи с укорочением диастолы.


В интактном сердце при тахикардии процесс расслабления сердечной мышцы ускоряется, что обеспечивает более быстрое и полное наполнение сердца кровью в течение укороченных диастолических периодов. Этот эффект частично опосредуется через стимуляцию p-рецепторов катехоламинами, которые повышают релаксацию кардиомиоцитов за счет ускоренного удаления из них внутриклеточного Са2+. При чрезмерной тахикардии (более 170 уд/мин) подобная полная диастолическая релаксация может не произойти, а следовательно и дальнейшее увеличение СВ.

Сердечный индекс

Сердечный индекс (СИ). В современной медицине показатель СВ нормализован с целью придания ему свойства сравнимости, необходимого для сопоставления результатов его измерения у разных индивидумов и в различных условиях функционирования сердца. Нормализованный показатель был назван «сердечный индекс», т.е. СИ — это расчетный показатель, размер которого у здоровых людей зависит от пола, возраста, массы тела.

Нормализация заключается в учете (нивелировании) влияния индивидуальных данных, биологических особенностей конкретного человека. Интегративным критерием таких особенностей была выбрана площадь поверхности тела (м2) обследуемого индивидума. Отсюда формула для расчета: СИ= СВ/ площадь тела (л/мин/м2), т. е. размерность СИ выражается в литрах в минуту из расчета на единицу площади поверхности тела (м2). Для расчета площади поверхности тела используют номограмму и целый ряд формул. Среди них, например, формула Дюбуа:

S = В0,423 х Р0-725 х 0,007184,


где S — площадь поверхности тела, м2; В — масса тела, кг; Р — рост, см; 0,007184 — постоянный коэффициент.

Номограмма для определения площади тела взрослого человека

По существу СИ представляет собой меру потока крови из сердца и в этом качестве является основным показателем его насосной функции. У здорового человека в состоянии покоя индекс считается нормальным в пределах 2,5— 3,6 л/мин/м2. Уменьшение возможностей сердца выполнять свою насосную функцию при различных формах патологии ведет к снижению СИ.

Таким образом, показатель СИ более адекватно, чем СВ, характеризирует гемодинамические возможности конкретного (а не некого виртуального) здорового организма и в условиях развития сердечной недостаточности. Именно этот показатель используют для объективной оценки степени ее выраженности. В этом качестве СИ является одним из основных классификационных критериев сердечной недостаточности.

Фракция выброса (ФВ)

Этот показатель характеризует степень эффективности работы сердца во время систолы. В основном принято измерять ФВ левого желудочка — основного компонента сердечного насоса. ФВ выражают в виде процента УО от объема крови в желудочке при максимальном его наполнении во время диастолы. Например, если в левом желудочке находилось 100 мл, а во время систолы в аорту поступило 60 мл крови, то ФВ равняется 60%.

Как правило, ФВ вычисляют по формуле:

ФВ = (КДО – КСО) / КДО х 100 (%),


где КДО — конечный диастолический объем, КСО — конечный систолический объем.

Наряду с расчетом ФВ используют аппаратные методы ее определения: эхокардиографию, рентгеноконтрастную или изотопную вентрикулографию.

Нормальное значение ФВ левого желудочка равно 55—75%. С возрастом имеется тенденция к снижению данного показателя. Принято считать, что величина ФВ ниже 45—50% свидетельствует о недостаточности насосной функции сердца.

Показатель ФВ при различных сердечно-сосудистых заболеваниях не только диагностически, но и прогностически значим. Однако он имеет определенные ограничения, т.к. зависит от сократимости миокарда и от других факторов (пред-, постнагрузки, частоты и ритмичности сердечных сокращений).

Давление заклинивания легочной артерии (ДЗЛА)

Для объективной оценки насосной функции левого сердца необходимо измерять кровяное давление в системе легочных вен — при левожелудочковой недостаточности оно повышается. Однако катетеризация легочных вен достаточно сложная процедура и включает ретроградное (против тока крови) проведение катетера из какой-либо периферической артерии (например, бедренной артерии) в аорту, затем в левый желудочек, левое предсердие и наконец через митральное отверстие в легочную вену.


полнение такого диагностического маневра чревато различными осложнениями — перфорацией сосудов, самозавязыванием катетера в узел, внесением «катетерной» инфекции, аритмиями, тромбообразова-нием и др., поэтому с целью определения уровня кровяного давления в легочных венах решено проводить катетеризацию не легочных вен, а легочной артерии. Это более простая и безопасная процедура для оценки насосной функции левого сердца. При ее проведении используют т. н. плавающий катетер Свана—Ганца (Swan Н., Ganz W.), на конце которого расположен небольшой баллончик, раздуваемый воздухом или изотоническим раствором натрия хлорида.

Вначале катетер проводят в верхнюю полую вену, используя технику катетеризации подключичной и внутренней яремной вен. После попадания катетера в правое предсердие баллончик немного раздувают. При этом катетер приобретает повышенную «плавучесть» и подобно лодочке под парусом практически самостоятельно током крови заносится в легочную артерию. Затем воздух (или изотонический раствор натрия хлорида) из баллончика выпускают и продвигают конец катетера в одно из разветвлений легочной артерии II и III порядка до упора, т. е. до капиллярной сети.

После этого вновь раздувают баллончик, обтурируя («заклинивая») сосуд, что позволяет зарегистрировать так наз. легочно-капиллярное давление или, точнее, давление, передаваемое через систему легочных вен и капилляров из левого предсердия в катетер.


Измеряемое при этом давление получило название «давление заклинивания легочной артерии» (ДЗЛА). На всех этапах продвижения катетера (правое предсердие, правый желудочек, легочная артерия и ее бифуркации) контролируют изменения кровяного давления с помощью этого же катетера для отслеживания его местонахождения.

ДЗЛА является одним из основных гемодинамических показателей насосной функции сердца, который, за некоторым исключением, фактически всегда соответствует давлению в левом предсердии и конечно-диастолическому давлению в левом желудочке, отражая, таким образом, состояние легочного капиллярного кровообращения и риск развития кардиогенного отека легких у пациентов с левожелудочковой недостаточностью.

Центральное венозное давление (ЦВД)

это давление крови в правом предсердии; показатель отражает преднагрузку правого сердца (желудочка). Ее величина зависит от объема крови, поступающей в правое сердце (чем больше возврат крови в сердце,тем выше ЦВД), и насосной функции правого сердца. ЦВД прежде всего отражает способность правого желудочка перекачивать весь объем поступающей в него крови, поэтому оно является объективным критерием насосной функции правого сердца.

При правожелудочковой недостаточности ЦВД повышается. Показатель ЦВД используют также для оценки объема циркулирующей крови. При этом необходимо учитывать способность венозной системы активно уменьшать свою емкость под воздействием факторов, регулирующих тонус венозных сосудов.


В условиях развития гиповолемических состояний их компенсаторный спазм может скрывать уменьшение ОЦК и соответственно снижение ЦВД. Известно, что быстрое уменьшение ОЦК на 10%, как правило, не сопровождается падением ЦВД. ЦВД измеряют в правом сердце с помощью катетера, снабженного манометром.

При горизонтальном положении тела нормальный уровень ЦВД находится в пределах 40—120 мм вод. ст. В условиях развития экстремальных состояний организма уровень ЦВД обычно непрерывно контролируется, т.к. ЦВД имеет исключительную ценность в дифференциальной диагностике шоковых состояний, инфарктов миокарда, сердечной недостаточности, выраженных кровопотерь и т.п.

Системное артериальное давление (АД систем.)

Системное артериальное давление (АД систем.) является функцией сердечного выброса (СВ) и общего периферического сопротивления сосудов (ОПСС):

АД систем. — f (СВ, ОПСС),

где f — функция (математическое понятие, отражающее связь между элементами множества).

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Артериальное давление систолическое

Артериальное давление систолическое (АД систол.), определяемое в период систолы левого желудочка сердца, отражает минутный объем сердца: МОС = f (ударный объем сердца, частота/ритм/сила сокращений сердца, объем циркулирующей крови);


Артериальное давление диастолическое

Артериальное давление диастолическое (АД диастол.), измеряемое в период диастолы левого желудочка, отражает общее периферическое сопротивление сосудов (ОПСС): ОПСС = f (диаметр [тонус] резистивных сосудов, реологические свойства крови);

Пульсовое артериальное давление

Пульсовое артериальное давление (АД пульс.) представляет собой (в первом приближении) разницу между уровнями систолического и диастолического давлений.

Артериальное давление среднее

Артериальное давление среднее (АД средн.) — в упрощенном варианте представляет собой среднее арифметическое между уровнями систолического и диастолического давлений. Существует ряд способов расчета уровня АД среди.:

1) АД средн. = (АД систол, х Т систол. + АД диастол, х Т диаст.) / Т серд. цикла, где Т — длительность систолы, диастолы или сердечного цикла;

2) АД средн. = АД диаст. + 1/3 АД пульс, (формула Хикема);

3) АД средн. = АД диаст. + 0,427 х АД пульс, (формула Вецлера и Богера; считают наиболее точной для расчета АД среда.);

Системное венозное давление (ВД средн.) принято приравнивать к среднему давлению в правом предсердии.

Общее периферическое сосудистое сопротивление (ОПСС). Этот показатель отражает суммарное сопротивление прекапиллярного русла и зависит как от сосудистого тонуса, так и от вязкости крови. На величину ОПСС влияет характер ветвления сосудов и их длина, поэтому обычно чем больше масса тела, тем меньше ОПСС.

В cвязи с тем, что для выражения ОПСС в абсолютных единицах требуется перевод давления мм рт. ст. в дин/см2, формула для расчета выглядит следующим образом:

ОПСС = (АД систем, х 80) / СВ [дин хсх см-5]; 80 – константа для перевода в метрическую систему.

Источник: cardio-bolezni.ru

Основными факторами, характеризующими состояние кровообращения и его эффективность, являются МОС, общее периферическое сопротивление сосудов и ОЦК (табл. 10.1). Эти факторы взаимообусловлены и взаимосвязаны и являются определяющими. Измерение лишь АД и частоты пульса не может дать полного представления о состоянии кровообращения. Определение МОС, ОЦК и вычисление некоторых косвенных показателей позволяют получить необходимую информацию.
Минутный объем сердца, или сердечный выброс, — количество крови, проходящее через сердце в 1 мин; сердечный индекс — отношение СВ к площади поверхности тела: СВ составляет в среднем 5—7 л/мин.
Центральная гемодинамика это
Ударный объем — количество крови, выбрасываемой сердцем за одну систолу; работа левого желудочка — механическая работа, производимая сердцем в 1 мин; давление заклинивания легочной артерии или заклинивания легочных капилляров — давление в дистальной ветви легочной артерии при раздутом баллончике; центральное венозное давление — давление в устье полой вены или в правом предсердии; общее периферическое сопротивление сосудов — показатель общего сопротивления сосудистой системы выбрасываемому сердцем объему крови:
Центральная гемодинамика это
Таблица 10.1.
Основные показатели кровообращения и их физиологические колебания

Обозначения Характеристика Физиологические колебания
МОС Минутный объем сердца 5—7 л/мин
СИ Сердечный индекс 2,5—3,5 лДмин-м2)
УО Ударный объем 70—80 мл
ВПК Время полного кругооборота крови 40-69 с
ЧСС Частота сердечных сокращений 60—80 уд/мин
РЛЖ Работа левого желудочка 6—7 кгм/мин
ОЦК Объем циркулирующей крови 65—70 мл/кг
ДЗЛА
(ДЗЛК)
Давление заклинивания легочной артерии (легочных капилляров) 5—12 мм рт.ст.
САД Среднее артериальное давление 90—95 мм рт.ст.
ЦВД Центральное венозное давление 6—12 см вод.ст.
ОПСС Общее периферическое сопротивление сосудов 1200—2500 дин-с-1см-5м2)

Посредством коэффициента 80 переводятся величины давления и объема в дин-с/см5 Фактически эта величина является индексом ОПСС.
Основной функцией кровообращения является доставка тканям необходимого количества кислорода и питательных веществ. Кровь переносит энергетические вещества, витамины, ионы, гормоны и биологически активные вещества с места их образования в различные органы. Баланс жидкости в организме, сохранение постоянной температуры тела, освобождение клеток от шлаков и доставка их к органам экскреции происходят благодаря постоянной циркуляции крови по сосудам.
Сердце состоит из двух «насосов»: левого и правого желудочков, которые должны проталкивать одинаковое количество крови, чтобы предупредить застой в артериальной и венозной системах (рис. 10.1). Левый желудочек, обладающий мощной мускулатурой, может создавать высокое давление. При достаточной оксигенации он легко приспосабливается к внезапным требованиям увеличения СВ. Правый желудочек, обеспечивая достаточный МОС, не может адекватно функционировать при внезапном повышении сопротивления.
Каждый сердечный цикл длится 0,8 с. Систола желудочков происходит в течение 0,3 с, диастола — 0,5 с. Сердечный ритм в здоровом сердце регулируется в синусовом узле, который находится у места впадения полых вен в правое предсердие. Импульс возбуждения распространяется по предсердиям, а затем к атриовентрикулярному узлу, расположенному между предсердиями и желудочками. Из атриовентрикулярного узла электрический импульс поступает по правой и левой ветвям пучка Гиса и волокнам Пуркинье (миоциты сердечные проводящие), покрывающим эндокардиальную поверхность обоих желудочков.
Центральная гемодинамика это
Рис. 10.1. Сердце.
1 — аорта, 2 — легочная артерия; 3 — дуга аорты; 4 — верхняя полая вена; 5 — нижняя полая пена; б — легочные вены. ПП — правое предсердие; ПЖ — правый желудочек, ЛП — левое предсердие; ЛЖ — левый желудочек.

Источник: www.med24info.com

Гемодинамика изучает механизмы движения крови в сердечно-сосудистой системе. Она является частью гидродинамики, раздела физики, изучающего движение жидкостей.

Гемодинамика определяется двумя силами: давлением — P, которое оказывает влияние на жидкость и сопротивлением — R, которое она испытывает при трении о стенки сосудов и вихревых движениях. Непосредственной причиной движения крови по сосудам является разность давлений, создаваемая работой сердца на артериальном и венозном концах сосудистой системы. Эффективность работы сердечно-сосудистой системы оценивается минутным объёмом кровотока (МОК), т.е. количеством крови, протекающим через сосуды за минуту. Согласно законам гидродинамики, количество жидкости — Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале – P1 и конце трубы – P2 и обратно пропорционально сопротивлению току жидкости — R:

Центральная гемодинамика это

Если применить это уравнение к большому кругу кровообращения, то следует иметь в виду, что давление в месте впадения полых вен в сердце близко к нулю. В этом случае уравнение можно записать как:

Центральная гемодинамика это

Где Q — количество крови, изгнанное сердцем в минуту, P — величина среднего давления в аорте, R— величина сосудистого сопротивления. Из этого уравнения следует, что P = Q х R., т.е. давление тем больше, чем больше объём крови выбрасывается сердцем в аорту в минуту и чем больше величина периферического сопротивления.

МОК всей артериальной или венозной системы численно равен минутному объёму сердца. В покое эта величина составляет 5 литров в минуту. В стационарном состоянии количество крови, оттекающее в минуту от сердца в аорту, или легочный ствол, равно количеству крови, возвращающемуся к сердцу через полые, или лёгочные вены. В любом месте артериальной или венозной системы, если иметь в виду общее сечение указанных сосудов в целом, минутный объём в каждый данный момент будет одинаков, т.е. те же 5 литров.

Общий МОК складывается из суммы минутных объёмов всех органов, величина которых различна. Для увеличения кровотока активно функционирующего органа в пределах того же самого общего МОК надо уменьшить кровоток других органов, которые в данный момент находятся в состоянии покоя. Такое перераспределение кровотока в сосудистой системе осуществляется путём изменения периферического сосудистого сопротивления. В активно функционирующем органе сосуды расширяются, а в остальных суживаются. В итоге функционирующий орган получает больше крови.

Протекая по трубке, жидкость преодолевает сопротивление, которое возникает вследствие внутреннего трения частиц жидкости между собой и о стенку трубки. Из формулы Пуазейля следует, что сопротивление будет тем больше, чем больше вязкость жидкости, чем длиннее трубка и чем уже её диаметр.

Формула Пуазейля

Центральная гемодинамика это

Где η — коэффициент вязкости, l — длина трубки и r — радиус.

Очень важно обратить внимание на то, что величина сопротивления в большей степени зависит от изменений диаметра сосудов, чем длины пройденного пути, и сопротивление обратно пропорционально четвёртой степени радиуса трубки. Из этого следует, что при увеличении диаметра сосуда в два раза, гидродинамическое сопротивление, уменьшится в 16 раз. Во столько же раз увеличится объёмный кровоток. Учитывая эти взаимоотношения, ясно, что при местных или системных приспособительных реакциях сосудистого русла, как уже было сказано выше, главную роль в регуляции давления и объёмной скорости кровотока играют изменения радиуса сосудов. По мере удаления от начала аорты, сопротивление сосудов всё время увеличивается, т.к. диаметр каждого сосуда (артерия, артериола, капилляр) становится всё меньше. В каком же отделе сосудистой системы кровь встречает наибольшее сопротивление для движения? Наибольшим сопротивлением из всех сосудов обладают артериолы. Они имеют просвет почти такой же узкий как капилляры, но значительно длиннее их, и скорость течения крови в них значительно выше. При прочих равных условиях сопротивление будет тем больше, чем больше скорость тока крови в сосудах, т.к. при этом возрастает внутреннее трение. Если на продвижение крови в крупных и средних артериях расходуется 10% энергии сердца, то 85% расходуется на продвижение крови в артериолах и капиллярах. Артериолы обладают толстой мышечной стенкой, с помощью которой меняется их просвет, и они являются главным регулятором уровня общего артериального давления. Сеченов И.М. называл артериолы кранами сердечно-сосудистой системы. Открытие этих кранов увеличивает приток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны. Итак, артериолы играют двоякую роль в кровообращении: 1) участвуют в поддержании необходимого уровня общего артериального давления, создавая основное сопротивление движению крови; 2) участвуют в регуляции величины местного кровотока через тот или иной орган, изменяя свой диаметр.

Динамика изменения давления и общего сопротивления в разных отделах сосудистого русла показана на рис. 18.

В артериальной части сопротивление медленно возрастает. На отрезке от мелких артерий до капилляров оно резко увеличивается за счет уменьшения диаметра артериол. В капиллярной части оно возрастает более медленно и совсем медленно в венах. Обратите внимание, что, несмотря на то, что диаметр вен увеличивается по сравнению с капиллярами, рост сопротивления продолжается. И это происходит за счёт значительного увеличения длины пройденного пути – L.

Кривая изменения среднего давления показывает, что оно имеет значительную величину в аорте — 100мм рт. ст., и круто снижается на участке, где больше всего возрастает сопротивление, т. е. в артериолах. И давление здесь снижается почти на 50%. Так, на входе в артериолы давление около 80, а на выходе около 35 мм рт.ст. В венах происходит дальнейшее снижение давления и в крупных венах, проходящих в грудной полости, оно может достигать -3 мм.рт.ст., что связано с отрицательным давлением в плевральной полости.

Центральная гемодинамика это

Рис.18 . Соотношение между давлением Р и общим сопротивлением R в различных отделах сосудистой системы

1 – аорта, 2 — артерии и артериолы, 3 –капилляры, 4 — полые вены.

Линейная скорость. Зная объёмную скорость кровотока, можно рассчитать линейную скорость движения частиц крови, которая выражается в см в сек.

Центральная гемодинамика это

Центральная гемодинамика это

Рис. 19. Средняя линейная скорость тока крови в разных частях сосудистой системы

В центре сосуда линейная скорость частиц максимальна, около стенки сосуда она минимальна в связи с трением частиц о стенку. Линейная скорость в различных сосудах неодинакова (рис. 19).

Скорость движения крови зависит от общей ширины данного отдела сосудистого русла. В кровеносной системе самым узким местом является аорта. При разветвлении артерий суммарный просвет всех ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: общий просвет всех капилляров в 500-600 раз больше просвета аорты. Соответственно, кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте. Так в аорте линейная скорость составляет 20-50 см в сек., а в капиллярах 0,5 мм в сек. В венах линейная скорость снова возрастает, т.к. суммарный просвет сосудистого русла снова суживается.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объёмная скорости непрерывно меняются, а в капиллярах и венах пульсации отсутствуют и кровоток постоянен. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки. В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы затрачивается на растяжение аорты и крупных артерий, которые образуют эластическую или компрессионную камеру. Поступающий сюда значительный объём крови растягивает её. При этом кинетическая энергия, развиваемая сердцем, переходит в энергию эластического напряжения растянутых артериальных стенок. Когда систола заканчивается, растянутые стенки артерий спадаются и проталкивают кровь в капилляры, поддерживая в них кровоток во время диастолы.

Скорость кругооборота крови. Время полного кругооборота — это время, за которое кровь проходит большой и малый круг кровообращения. При частоте сердечных сокращений 70-80 в минуту кругооборот крови происходит за 20-23 секунды. На полный кругооборот тратится 27 систол сердца. 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения, 4/5 — по большому кругу. При напряжённой мышечной работе, когда требуется значительное увеличение минутного объём крови, скорость кругооборота возрастает. При тяжёлых расстройствах сердечной деятельности скорость кругооборота крови замедляется и может доходить до 63 секунд.

Особенности кровотока в венах

В различных участках сосудистой системы кровь распределяется в соответствии с направлением силы тяжести, называемой в кровообращении гидростатическим фактором. Так, при переходе человека из горизонтального положения в вертикальное, кровь в силу тяжести могла бы задерживаться в венах нижних конечностей и растягивать их, т.к. венозные сосуды имеют стенки со слабо развитыми мышцами. В норме после часового стояния объём нижних конечностей увеличивается почти на 4% по сравнению с объёмом в лежачем положении. Таким образом, гидростатический фактор создаёт затруднение для кровотока в нижней половине туловища. У здорового человека имеются механизмы, противодействующие гидростатическим силам. Ниже перечисленные факторы способствуют возврату крови к сердцу.

1. Кинетическая энергия, сообщаемая крови сердцем во время систолы.

2.Присасывающее действие грудной клетки и сердца. Существующее в плевральной полости отрицательное давление оказывает присасывающее действие, которое облегчает поступление крови из периферических вен в грудные, что особенно заметно во время вдоха, когда внутриплевральное давление ещё больше снижается. Кровь из вен присасывается и сердцем во время диастолы вследствие падения давления в правом предсердии.

3.Тонус сосудистой мышечной стенки, проявляющийся в констрикции венозных сосудов, регулируемый нервными и гуморальными влияниями.

4.Сокращения скелетной мускулатуры (так называемый периферический мышечный насос), способствующие «выжиманию» крови из вен.

5. Венозные клапаны, препятствующие обратному току крови.

Уровень центрального венозного давления (ЦВД), т.е. давления в правом предсердии, оказывает существенное влияние на величину венозного возврата крови к сердцу. При понижении давления в правом предсердии от 0 до — 4 мм рт. ст. приток венозной крови возрастает на 20-30%. При падении ниже — 4 мм рт. ст. полые вены начинает спадаться. При повышении давления в правом предсердии на 1 мм рт.ст. венозный возврат снижается на 14%. ЦВД обычно измеряется в мм вод. ст.

Средняя величина ЦВД у здоровых людей в условиях мышечного покоя составляет от 40 до 120 мм вод. ст. При вдохе ЦВД уменьшается за счёт падения плеврального давления и дополнительного растяжения правого предсердия. Это способствует более быстрому наполнению предсердий. При выдохе ЦВД растёт и венозный возврат к сердцу уменьшается. При операциях на сердце с использованием искусственного кровообращения, важно следить за величиной ЦВД, т.к. оно даёт представление о величине венозного возврата и является одним из критериев для контроля достаточности перфузии сердца.

Источник: studfile.net


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.