Что такое автоматизм сердца

АВТОМАТИ́Я СЕ́РДЦА, способность клеток сердца к самовозбуждению без каких-либо воздействий извне.
Изолированное сердце при снабжении его питательным раствором способно сокращаться вне организма продолжительное время. У плода человека первые сокращения сердца возникают на 19-й или 20-й день внутриутробного развития, когда парные закладки сердца сливаются в одну сердечную трубку, все клетки которой способны к самовозбуждению. По мере формирования эмбрионального сердца в его ткани происходит разделение на сократительный миокард (см. МИОКАРД) и проводящую систему сердца (см. ПРОВОДЯЩАЯ СИСТЕМА). Способность генерировать автоматический ритм закрепляется за узловой тканью проводящей системы, образующей узлы автоматии — синусно-предсердный (так называемый водитель ритма сердца, или пейсмекер) и предсердно-желудочковый.
Потенциально все элементы проводящей системы в разной степени способны к генерации автоматического ритма. Существует так называемый градиент автоматии.


иболее высокой способностью к автоматии обладает синусно-предсердный узел, где генерируется ритм, который усваивается остальными элементами проводящей системы и сократительным миокардом. У человека он равен 60—70 уд/мин в состоянии покоя. Если работа синусно-предсердного узла нарушена, функция водителя ритма переходит к предсердно-желудочковому узлу, который генерирует более медленный сердечный ритм (около 40 уд/мин), но он в состоянии обеспечить нормальную работу сердца и нормальное кровоснабжение организма. Другие элементы проводящей системы, и в первую очередь пучок Гиса, также способны к автоматии, но генерируемое здесь возбуждение возникает с еще более низкой частотой и проявляется только в условиях патологии, например при гипоксии (см. ГИПОКСИЯ) и ишемии (см. ИШЕМИЯ). В этих условиях ненормальные очаги автоматии могут формироваться и в сократительных клетках сердца, создавая источники аритмии сердца (см. АРИТМИЯ СЕРДЦА).
Способность клетки генерировать автоматический ритм в значительной мере определяется величиной мембранного потенциала, при котором активируются ионные каналы, обеспечивающие самовозбуждение клетки (см. Потенциалы действия сердца (см. ПОТЕНЦИАЛ ДЕЙСТВИЯ)). Для клеток узловой ткани характерен более низкий уровень мембранного потенциала, чем для сократительных клеток сердца. Гипоксия и ишемия вызывают снижение мембранного потенциала в сократительных клетках сердца и делают возможным возникновение в них автоматии.

r />Узловая ткань позвоночных имеет мышечное происхождение — в этом случае принято говорить о миогенной автоматии. У части беспозвоночных животных, а именно у ракообразных, возбуждение возникает в нервных ганглиях, расположенных на поверхности сердца, откуда оно передается сократительным клеткам. В этом случае говорят о нейрогенном ритме (автоматии). Нейрогенная автоматия сердца, вероятно, явление вторичное, т. к. личинки животных, обладающих нейрогенной автоматией, имеют миогенный сердечный ритм, а после экспериментального удаления нервных ганглиев в сердце на миогенный ритм переходят и взрослые ракообразные.
Точно определить местонахождение водителя ритма в сердце и характер его автоматии позволяет регистрация потенциалов действия сердца. Потенциалы действия всех автоматических структур, и миогенных и нейрогенных, имеют предымпульсную деполяризацию, выводящую мембранный потенциал этих клеток на уровень возникновения распространяющегося электрического импульса. Потенциалы действия нейрогенных сердец имеют свою особенность: на плато потенциала действия сократительной клетки сердца у них накладывается разряд автоматических клеток нервного ганглия, придавая ему своеобразное очертание.
При разобщении клеток узловой ткани друг от друга каждая из них возбуждается с собственной частотой, отличной от частоты интактного водителя ритма. Единый ритм работы всех клеток, составляющих водитель ритма, формируется в результате синхронизации, происходящей на основе электрического и механического взаимодействия этих клеток.

Источник: dic.academic.ru

Что такое автоматизм сердца?


Мышечные волокна в организме человека обладают способностью реагировать на раздражающий импульс сокращением и затем последовательно передавать это сокращение по всей мышечной структуре. Доказано, что изолированная сердечная мышца способна самостоятельно генерировать возбуждение и совершать ритмические сокращения. Такая способность называется автоматизмом сердца.

Причины сердечного автоматизма

Понять, в чем заключается автоматизм сердца, можно из нижеследующего. Сердце имеет специфическую способность к генерации электрического импульса с последующим его проведением до мышечных структур.

Синоатриальный узел – скопление пейсмекерских клеток первого типа (содержит около 40 % митохондрий, рыхло расположенные миофибриллы, отсутствует Т-система, содержит большое количество свободного кальция, имеет слаборазвитую саркоплазматическую сеть), располагается в правой стенке верхней полой вены, в месте впадения в правое предсердие.

Атриовентрикулярный узел образован переходными клетками второго типа, которые проводят импульс из синоатриального узла, однако в особых условиях могут самостоятельно генерировать электрический заряд. Переходные клетки содержат меньше митохондрий (20-30 %) и несколько больше миофибрилл, чем клетки первого порядка. Атриовентрикулярный узел расположен в межпредсердной перегородке, по нему возбуждение передается к пучку и ножкам пучка Гиса (содержат 20-15 % митохондрий).


Волокна Пуркинье являются следующим этапом передачи возбуждения. Они отходят приблизительно на уровне середины перегородки от каждой из двух ножек пучка Гиса. Их клетки содержат около 10 % митохондрий, по структуре несколько больше похожи на сердечные мышечные волокна.

Самопроизвольное возникновение электрического импульса происходит в пейсмекерских клетках синоатриального узла, который потенцирует волну возбуждения, стимулирующую 60-80 сокращений в минуту. Он является водителем первого порядка. Затем возникшая волна передается на проводящие структуры второго и третьего уровня. Они способны как проводить волны возбуждения, так и самостоятельно индуцировать сокращения более низкой частоты. Водителем второго уровня после синусового узла является атриовентрикулярный узел, который способен самостоятельно создавать 40-50 разрядов в минуту в отсутствии подавляющей активности синусового узла. Далее возбуждение передается на структуры пучка Гиса, который воспроизводит 30-40 сокращений в минуту, затем электрический заряд перетекает на ножки пучка Гиса (25-30 импульсов в минуту) и систему волокон Пуркинье (20 импульсов в минуту) и попадает на рабочие мышечные клетки миокарда.

Обычно импульсы из синоатриального узла подавляют самостоятельную способность к электрической активности нижележащих структур. Если нарушается функционирование водителя первого порядка, то его работу на себя берут стоящие ниже звенья проводящей системы.

Химические процессы, обеспечивающие автоматизм сердца


Что такое автоматизм сердца с точки зрения химии? На молекулярном уровне основой для самостоятельного возникновения электрического заряда (потенциала действия) на мембранах пейсмекерских клеток является наличие так называемого импульсатора. Его работа (функция автоматизма сердца) содержит три этапа.

Этапы работы импульсатора:

  • 1-я фаза подготовительная (в результате взаимодействия супероксидного кислорода с положительно заряженными фосфолипидами на поверхности мембраны пейсмекерской клетки она приобретает отрицательный заряд, это нарушает потенциал покоя);
  • 2-я фаза активного транспорта калия и натрия, во время работы которого наружный заряд клетки становится равен +30 мВт;
  • 3-я фаза электрохимического скачка – используется энергия, возникающая при утилизации активных форм кислорода (ионизированного кислорода и перекиси водорода) с помощью ферментов супероксиддисмутазы и каталазы. Возникшие кванты энергии повышают биопотенциал пейсмекера настолько, что он вызывает потенциал действия.

Процессы генерации импульса клетками – пейсмекерами обязательно происходят в условиях достаточного присутствия молекулярного кислорода, который доставляется к ним эритроцитами притекающей крови.

Снижение уровня работы или частичное прекращение функционирования одного или нескольких этапов системы импульсатора нарушает согласованную работу пейсмекерских клеток, что вызывает аритмии. Блокировка одного из процессов этой системы вызывает внезапную остановку сердца. Поняв, что такое автоматизм сердца, можно осознать и этот процесс.

Воздействие автономной нервной системы на работу сердечной мышцы


Помимо собственной возможности генерировать электрические импульсы, работа сердца контролируется сигналами из иннервирующих мышцу симпатических и парасимпатических нервных окончаний, при сбое которых возможно нарушение автоматизма сердца.

Воздействие симпатического отдела ускоряет работу сердца, оказывает стимулирующее действие. Симпатическая иннервация оказывает положительное хронотропное, инотропное, дромотропное действие.

Под преобладающим действием парасимпатической нервной системы происходит замедление процессов деполяризации пейсмекерских клеток (тормозящее действие), а значит, урежение сердечного ритма (отрицательное хронотропное действие), снижение проводимости внутри сердца (отрицательное дромотропное действие), уменьшение энергии систолического сокращения (отрицательное инотропное действие), но усиливается возбудимость сердца (положительное батмотропное действие). Последнее тоже принимается за нарушение функции автоматизма сердца.

Причины нарушения автоматизма сердца

  1. Ишемия миокарда.
  2. Воспаление.
  3. Интоксикация.
  4. Нарушение баланса натрия, калия, магния, кальция.
  5. Гормональная дисфункция.
  6. Нарушение воздействия автономных симпатических и парасимпатических окончаний.

Типы нарушений ритма вследствие нарушения автоматизма сердца

  1. Синусовая тахи- и брадикардия.
  2. Дыхательная (юношеская) аритмия.
  3. Экстрасистолическая аритмия (синусовая, предсердная, атриовентрикулярная, желудочковая).
  4. Пароксизмальные тахикардии.

Различают аритмии вследствие нарушения автоматизма и проводимости с образованием циркуляции волны возбуждения (волна re-entry) в одном определенном или нескольких отделах сердца, в результате возникает фибрилляция или трепетание предсердий.

Фибрилляция желудочков – одна из наиболее угрожающих для жизни аритмий, следствием которой является внезапная остановка сердца и смерть. Наиболее эффективный метод лечения – электрическая дефибрилляция.

Заключение

Итак, рассмотрев, в чем заключается автоматизм работы сердца, можно понять, какие нарушения возможны в случае заболевания. Это, в свою очередь, дает возможность бороться с болезнью более оптимальными и действенными методами.

Источник: FB.ru

Регуляция работы сердца

Работа сердца регулируется при помощи миогенных, нервных и гуморальных механизмов.


Миогенный, или гемодинамический, механизм регуляции разделяют на: гетерометрический и гомеометрический.

Нервная система регулирует частоту и силу сердечных сокращений: (симпатическая нервная система обуславливает усиление сокращений, парасимпатическая — ослабляет).

Воздействие эндокринной системы на сердце происходит при посредстве гормонов, которые могут усиливать или ослаблять силу сердечных сокращений, изменять их частоту. Основной эндокринной железой, регулирующей работу сердца, можно считать надпочечники: они выделяют гормоны адреналин и норадреналин, действие которых на сердце соответствуют функциям симпатической нервной системы. Эффект на работу сердца оказывают также ионы кальция и калия, а также эндорфины и множество иных биологически активных веществ.

сердце желудочек клапан кровообращение

2. Особенности работы сердца Биофизический взгляд на строение сердца

С точки зрения современной науки, сердце представляет собой многокомпонентную полимерную неоднородную активную среду естественного происхождения. Тонкая организация структуры этой среды и обеспечивает её основные биологические функции.

Неоднородная структура сердца, лежащая в основе его тонкой организации, была многократно подтверждена сначала при помощи методов электрофизиологии, а затем и методами вычислительной биологии.


Автоволновые свойства сердечной ткани уже более чем полстолетия активно исследуются и российской, и мировой наукой.

Новый научный взгляд на этот биологический объект позволяет по-новому подойти к решению проблемы создания искусственного сердца: задача сводится к налаживанию базирующегося на современных нанотехнологиях производства искусственной полимерной активной среды с аналогичной автоволновой функцией

Но давайте еще подробнее ознакомимся с работой сердца и поговорим о её особенностях.

В чем секрет неутомимости сердца?

  • особенности работы сердца: она состоит в последовательном сокращении и расслаблении с короткими промежутками для отдыха;

  • обильное кровоснабжение сердца: в состоянии покоя в него подается 250-300 см3 крови в минуту, а при тяжелой физической работе — до 2000 см3.

Особенности сердечной мышцы. Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. В стенке сердца имеются особые мышечные волокна, способные самовозбуждаться.

Скелетная мышца может сокращаться лишь в ответ на приходящий нервный импульс, а сердечная мышца сокращается под влиянием импульсов, возникающих в ней самой. Способность органа работать без сигнальных раздражений извне называется автоматизмом. Сердечная мышца тоже обладает этой способностью.


Сердечный цикл. Сердце ритмически сокращается и расслабляется. При сокращении кровь выталкивается из камеры, при расслаблении заполняет ее.

Сердечный цикл начинается с сокращения предсердий. При этом кровь через открытые створчатые клапаны проталкивается в желудочки сердца. Сокращение предсердий начинается с места впадения в него вен, поэтому устья их сжаты и попасть назад в вены кровь не может.

Вслед за предсердиями сокращаются желудочки. Створчатые клапаны, отделяющие предсердия от желудочков, поднимаются, захлопываются и препятствуют возврату крови в предсердия. Удерживающие их нити и сосочковые мышцы напряжены.

Благодаря этому кровь не может попасть в предсердия. Под ее напором открываются полулунные клапаны на границе между желудочками и выносящими сосудами, и кровь направляется из левого желудочка в аорту (большой круг кровообращения), а из правого желудочка в легочные артерии (малый круг кровообращения).

После окончания сокращения желудочков артерии растягиваются под напором вытолкнутой крови, а полулунные клапаны захлопываются, и кровь устремляется по артериям. Попасть обратно в желудочки сердца кровотоку не дают полулунные клапаны. Во время паузы сердечные камеры исполняются кровью. Створчатые клапаны открыты.

Из вен кровь попадает в предсердия и частично стекает в желудочки. Когда начнется новый цикл, оставшаяся в предсердиях кровь будет вытолкнута в желудочки — цикл повторится. Сердечный цикл имеет определенную продолжительность: 0,1 с сокращаются предсердия; 0,3 с сокращаются желудочки и 0,4 с длится пауза. Когда сердце учащает свою работу, пауза становится короче.

Зная сердечный цикл и время сокращения сердца в 1 мин (70 ударов), можно определить, что из 80 лет жизни: мышцы желудочков отдыхают — 50 лет, мышцы предсердий отдыхают -70 лет.

Автоматизм сердца — способность сердца ритмически сокращаться без внешних раздражений под влиянием импульсов, возникающих в нем самом.

В сердце человека источником автоматизма служат особые мышечные клетки. Они располагаются в различных его отделах. В здоровом сердце человека главным центром зарождения автоматических импульсов являются мышечные клетки, расположенные в правом предсердии.

Автоматически работающее сердце создает слабые биоэлектрические сигналы, которые проводятся по всему телу. Эти регистрируемые от кожи рук и ног и от поверхности грудной клетки сигналы называются электрокардиограммой.

Нервная регуляция сердца. Центральная нервная система постоянно контролирует работу сердца посредством нервных импульсов. Внутри полостей самого сердца и в стенках крупных сосудов расположены нервные окончания — рецепторы, воспринимающие колебания давления в сердце и сосудах. Импульсы от рецепторов вызывают рефлексы, влияющие на работу сердца.

Существует два вида нервных влияний на сердце: одни — тормозящие, т. е. снижающие частоту сокращений сердца, другие — ускоряющие. Импульсы передаются к сердцу по нервным волокнам от нервных центров, расположенных в продолговатом и спинном мозге. Влияния, ослабляющие работу сердца, передаются по парасимпатическим нервам, а усиливающие его работу — по симпатическим.

Например, у человека учащаются сокращения сердца, когда он быстро встает из положения лежа. Дело в том, что переход в вертикальное положение приводит к накоплению крови в нижней части туловища и уменьшению кровенаполнения верхней части, особенно головного мозга.

Чтобы восстановить кровоток в верхней части туловища, от рецепторов сосудов поступают импульсы в центральную нервную систему. Оттуда к сердцу по нервным волокнам передаются импульсы, ускоряющие сокращение сердца. Эти факты -наглядный пример саморегуляции деятельности сердца.

Болевые раздражения также изменяют ритм сердца. Болевые импульсы поступают в центральную нервную систему и вызывают замедление или ускорение сердцебиений.

Мышечная работа всегда сказывается на деятельности сердца. Включение в работу большой группы мышц по законам рефлекса возбуждает центр, ускоряющий деятельность сердца.

Большое влияние на сердце оказывают эмоции. Под воздействием положительных эмоций люди могут совершать колоссальную работу, поднимать тяжести, пробегать большие расстояния. Отрицательные эмоции, наоборот, снижают работоспособность сердца и могут приводить к нарушениям его деятельности.

Гуморальная регуляция работы сердца. Наряду с нервным контролем деятельность сердца регулируется химическими веществами, постоянно поступающими в кровь. Такой способ регуляции через жидкие среды называется гуморальной регуляцией. Веществом, тормозящим работу сердца, является ацетилхолин. Чувствительность сердца к этому веществу так велика, что в дозе 0,000 000 1 мг ацетилхолин отчетливо замедляет его ритм.

Противоположное действие оказывает другое химическое вещество — адреналин. Адреналин даже в очень малых дозах усиливает работу сердца. Например, боль вызывает выделение в кровь адреналина в количестве нескольких микрограммов, которые заметно изменяют деятельность сердца. В медицинской практике адреналин вводят иногда прямо в остановившееся сердце, чтобы заставить его вновь сокращаться.

Нормальная работа сердца зависит от количества в крови солей калия и кальция. Увеличение содержания солей калия в крови угнетает, а кальция усиливает работу сердца. Таким образом, работа сердца изменяется с изменением условий внешней среды и состояния самого организма

Заключение

И так подведем итог. Из контрольной работы мы узнали, что сердце – это центральный орган кровеносной системы в виде мышечного мешка. Сердце работает непрерывно, днём и ночью, всю жизнь. От работы сердца зависит работа других органов, всего организма. В самом деле, кровь вовремя и в нужном количестве принесёт питательные вещества и воздух ко всем органам, если сердце справляется со своей работой.

И учёных, и просто любознательных поражает огромная работоспособность сердца. За 1 минуту сердце перегоняет 4 – 5 литров крови. Нетрудно подсчитать, сколько перегонит сердце крови за сутки. Получится немало 7200 литров. А размер его всего с кулак. Вот каким тренированным должно быть сердце. Поэтому, занимаясь физкультурой и спортом, выполняя физический труд, мы укрепляем все мышцы нашего организма, в том числе и сердце. Но следует помнить, что физические нагрузки оказывают на сердце не только положительное влияние. При неправильном распределении нагрузок возникают перегрузки, которые несут сердцу вред!

Берегите своё сердце!

И помните, отличной тренировкой для сердца являются физический труд на свежем воздухе, занятия физкультурой, зимой — катание на коньках и лыжах, летом – купание и плавание. Хорошо укрепляют сердце утренняя гимнастика и ходьба.

Так же стоит обратить внимание на питание. И наличие витаминов в нашем ежедневном рационе питания.

Список литературы

  1. Елгазин В.И. Техническая эстетика (гигиенические, анатомические и психофизиологические основы): учеб. пособие.- Томск: ТУ, 2000.

  2. Панфилова Л.А. Анатомия, физиология и гигиена человека: Общая биология: Учеб. пособие / Л.А. Панфилова. — М.: Рипол Классик, 2001.

  3. Хармс Д. Собрание сочинений: В 3-х т. — СПб.: Азбука, 2000 — .Т.2: Новая Анатомия. — 2000. — 416 с.

  4. Человек: анатомия, физиология, психология: энцикл. ил. слов. / ред. А.С. Батуев, Е.П. Ильин, Л.В. Соколова. — СПб.: Питер, 2007. – 672

  5. Анатомия человека: Учебник для медицинских институтов / Под ред. М.Р. Сапина. — М.: Медицина, 1985.

  6. Анатомия человека: Учебник для техникумов физической культуры / Под ред. А.А. Гладышевой. — М.: ФиС, 1984.

  7. Иваницкий М.Ф. Анатомия человека: Учебник для студентов физической культуры / Отв. ред. Б.А. Никитюк. — М.: ФиС, 2004.

  8. Анатомия и физиология проводящей системы сердца. Под ред. проф. А. В. Ардашева. — М.: МЕДПРАКТИКА-М, 2009. с 35-41. 1220 с.

  9. Судаков К.В. Нормальная физиология. — М.: Медицинское информационное агентство, 2006. с. 329. 920 с.

Источник: studfile.net


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector