Гуморальная регуляция деятельности сердца

Сердце регулируется нервными, гуморальными механизмами и обладает саморегуляцией. Нервная регуляция осуществляется импульсами, поступающими из ЦНС по блуждающим и симпатическим нервам.

1 нейроны симпатической нервной системы, иннервирующие сердце, находятся в боковых рогах 5 верхних отделов грудного спинного мозга. Отростки этих нейронов идут в шейный и верхние грудные симпатические ганглии, где располагается 2 нейрон, отростки которого идут к сердцу.

В 1845 году братья Вебер показали, что раздражение блуждающего нерва тормозит работу сердца, вплоть до остановки в диастоле. Последующие изучения детализировали изменения в сердечной деятельности:

•Отрицательный хронотропный эффект – уменьшение частоты;

•Отрицательный инотропный эффект – ослабление;

•Отрицательный батмотропный эффект – понижение возбудимости;

•Отрицательный дромотропный эффект – ухудшение проводимости.

Эффекты аналогичные влиянию блуждающих нервов, но в противоположном направлении – положительные (хронотропный, батмотропный). При раздражении блуждающих нервов в их окончаниях выделяется ацетил-холин, а симпатических нервов – норадреналин или симпатин. Ацетил-холин быстро разрушается ферментом холиностеразой, поэтому влияние ацетил-холина носит местный характер. Норадреналин разрушается медленнее и действует медленнее (сохранение учащения сердцебиения).


Нервные центры, от которых идут сердечные нервы все время находятся в возбужденном состоянии – центральный тонус. Особенно это прослеживается на блуждающем нерве, поэтому к сердцу постоянно поступают тормозящие импульсы. Тонус блуждающего нерва обуславливается импульсами, которые поступают по афферентым путям от рецепторов (особенно рецепторов дуги аорты и каратийного синуса) (разветвление сонной артерии).

Кроме центров спинного и продолговатого мозга в регуляции сердечной деятельности участвует гипоталамус, мозжечок и кора больших полушарий.

При участии этих отделов осуществляется рефлекторная регуляция сердца.

Источник: students-library.com

Изменения работы сердца наблюдаются при действии на него ряда биологически активных веществ, циркулирующих в крови.

Катехоламины (адреналин, норадреналин) увеличивают си­лу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При физических нагрузках или эмоцио­нальном напряжении мозговой слой надпочечников выбрасывает в кровь большое количество адреналина, что приводит к усилению сердечной деятельности, крайне необходимому в данных условиях.


Указанный эффект возникает в результате стимуляции катехоламинами рецепторов миокарда, вызывающей активацию внутри­клеточного фермента аденилатциклазы, которая ускоряет образова­ние 3′,5′-циклического аденозинмонофосфата (цАМФ). Он акти­вирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокра­щающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са2+ — агента, реализующего сопряжение воз­буждения и сокращения в миокарде (это также усиливает положи­тельное инотропное действие катехоламинов). Помимо этого, кате­холамины повышают проницаемость клеточных мембран для ионов Са2+, способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобилизации ионов Са2+ из внутриклеточных депо.

Активация аденилатциклазы отмечается в миокарде и при дей­ствии глюкагона — гормона, выделяемого α-клетками панкреа­тических островков, что также вызывает положительный инотропный эффект.

Гормоны коры надпочечников, ангиотензин и серотонин также увеличивают силу сокращений миокарда, а ти­роксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда.

 

Эндокринная функция сердца


Миоциты предсердий образуют атриопептид, или натрийуретический гормон. Стимулируют секрецию этого гормона растяжение предсердий притекающим объемом крови, изменение уровня натрия в крови, содержание в крови вазопрессина, а также влияния экстракардиальных нервов. Натрийуретический гормон обладает ши­роким спектром физиологической активности. Он сильно повышает экскрецию почками ионов Na+ и Сl-, подавляя их реабсорбцию в канальцах нефронов. Влияние на диурез осуществляется также за счет увеличения клубочковой фильтрации и подавления реабсорбции воды в канальцах. Натрийуретический гормон подавляет секрецию ренина, ингибирует эффекты ангиотензина II и альдостерона. На­трийуретический гормон расслабляет гладкие мышечные клетки мел­ких сосудов, способствуя тем самым снижению артериального дав­ления, а также гладкую мускулатуру кишечника.

 

Гемодинамика — это раздел физиологии кровообращения, изучающий закономерности движения крови по сосудам. С помощью сосудов обеспечивается возможность жизнедеятельности человека, так как по ним к каждой клетке организма доставляются и удаляются различные продукты обмена. Благодаря работе сердца кровь в сосудах находится в постоянном движении.

Строение сосудов. Все кровеносные сосуды выстланы изнутри слоем эндотелия, непосредственно прилегающим к просвету сосуда. Кроме эндотелия, во всех сосудах, за исключением капилляров, имеются эластические волокна, коллагеновые волокна и гладкомышечные волокна, количество которых различается в разных сосудах.

Прежде всего, представим функциональную классификацию кровеносных сосудов. Все сосуды организма представлены:

— магистральными сосудами;

— резистивными сосудами;

— обменными сосудами;

— емкостными сосудами;

— шунтирующими сосудами.


Гуморальная регуляция деятельности сердца

 

Рис. Структура кровеносных сосудов в различных областях системной гемоциркуляции.

К магистральныым сосудам относятся аорта, легочные атрериии другие крупные артерии организма. Стенка этих сосудов содержит много эластических элементов и много гладкомышечных волокон. Значение этих сосудов: превращают пульсирующий выброс крови из сердца в непрерывный кровоток.

К резистивным сосудам относятся пре- и посткапилляры. Прекапиллярные сосуды — это мелкие артерии и артериолы, капиллярные сфинктеры. Эти сосуды имеют несколько слоев гладкомышечных клеток. Посткапиллярные сосуды — это мелкие вены, венулы, у них тоже есть гладкие мышцы. Значение этих сосудов состоит в том, что они оказывают наибольшее сопротивление кровотоку. Прекапиллярные сосуды регулируют кровоток в микроциркуляторном русле и поддерживают определенную величину кровяного давления в крупных артериях. Посткапиллярные сосуды поддерживают определенный уровень кровотока и величину давления в капиллярах.


К обменным сосудам относятся капилляры, стенка которых имеет один слой эндотелиальных клеток и поэтому они обладают высокой проницаемостью по отношении к различным классам веществ. В них собственно и осуществляется транскапиллярный обмен.

К емкостным сосудам относятся все вены. Они обладают наименьшим сопротивлением кровотоку, поскольку их стенка легко растягивается. Значение этих сосудов состоит в том, что они за счет своего расширения депонируют кровь. В них обычно содержится до 2/3 всей крови организма.

Шунтирующие сосуды связывают артерии с венами минуя капилляры. Их значение состоит в том, что они обеспечивают разгрузку капиллярного русла.

 

Капилляры — это наиболее важный в функциональном отношении отдел кровеносной системы, так как именно в них осуществляется обмен между кровью и интерстициальной жидкостью. Обмен между кровью и интерстициальной жидкостью происходит не только в капиллярах, он осуществляется также в венулах. Поскольку венулы и артериолы участвуют в регуляции капиллярного кровотока, совокупность сосудов от артериол до венул именуется терминальным или микроциркуляторным руслом и его следует рассматривать как общую функциональную единицу.

Гуморальная регуляция деятельности сердца

Функции сердца и периферических сосудов скоординированы для транспорта крови в капиллярную сеть, где осуществляется обмен между кровью и тканевой жидкостью. Перенос воды и веществ через стенку сосудов осуществляется посредством диффузии, пиноцитоза и фильтрации.


Транскапиллярное движение жидкости определяется впервые описанным Старлингом соотношением между капиллярной и интерстициальной гидростатической и онкотической силами, действующими через капиллярную стенку. Это движение может быть описано следующей формулой:

 

V= Kf * ((Pгк+Pои)-(Pги+Pок))

где V — объём жидкости, проходящей через стенку капилляра за 1 мин;

Kf — коэффициент фильтрации;

Pгк — гидростатическое давление в капилляре;

Pои — онкотическое давление в интерстициальной жидкости;

Pги — гидростатическое давление в интерстициальной жидкости;

Pок — онкотическое давление в плазме.

 

Коэффициент капиллярной фильтрации (Kf) — объём жидкости, фильтруемой за 1 мин 100 г ткани при изменении давления в капилляре в 1 мм рт.ст. Kf отражает состояние гидравлической проводимости и поверхности капиллярной стенки.

Среднее капиллярное давление на артериальном конце капилляров на 15-25 мм рт.ст. больше, чем на венозном конце. В силу этой разницы давлений кровь фильтруется из капилляра на артериальном конце и реабсорбируется на венозном.

Источник: cyberpedia.su

10. Сосудистый тонус и его регуляция


Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение. Тонус поддерживается за счет базального механизма. Разные сосуды обладают разным базальным тонусом: максимальный тонус наблюдается в коронарных сосудах, скелетных мышцах, почках, а минимальный – в коже и слизистой оболочке. Его значение заключается в том, что сосуды с высоким базальным тонусом на сильное раздражение отвечают расслаблением, а с низким – сокращением.

Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС. За счет этого происходит еще большее увеличение базального тонуса. Такой суммарный тонус – тонус покоя, с частотой импульсов 1–3 в секунду.

Таким образом, сосудистая стенка находится в состоянии умеренного напряжения – сосудистого тонуса.

В настоящее время выделяют три механизма регуляции сосудистого тонуса – местный, нервный, гуморальный.

Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.


Миогенная регуляция связана с изменением состояния гладких мышц – это эффект Остроумова—Бейлиса, направленный на поддержание на постоянном уровне объема крови, поступающей к органу.

Метаболическая регуляция обеспечивает изменение тонуса гладкомышечный клеток под влиянием веществ, необходимых для обменных процессов и метаболитов. Она вызвана в основном сосудорасширяющими факторами:

1) недостатком кислорода;

2) повышением содержания углекислого газа;

3) избытком К, АТФ, аденина, цАТФ.

Метаболическая регуляция наиболее выражена в коронарных сосудах, скелетных мышцах, легких, головном мозге. Таким образом, механизмы ауторегуляции настолько выражены, что в сосудах некоторых органах оказывают максимальное сопротивление суживающему влиянию ЦНС.

Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора. Симпатические нервы вызывают сосудосуживающий эффект в тех из них, в которых преобладают β1-адренорецепторы. Это кровеносные сосуды кожи, слизистых оболочек, желудочно-кишечного тракта. Импульсы по сосудосуживающим нервам поступают и в состоянии покоя (1–3 в секунду), и в состоянии активности (10–15 в секунду).


Сосудорасширяющие нервы могут быть различного происхождения:

1) парасимпатической природы;

2) симпатической природы;

3) аксон-рефлекс.

Парасимпатический отдел иннервирует сосуды языка, слюнных желез, мягкой мозговой оболочки, наружных половых органов. Медиатор ацетилхолин взаимодействует с М-холинорецепторами сосудистой стенки, что приводит к расширению.

Для симпатического отдела характерна иннервация коронарных сосудов, сосудов головного мозга, легких, скелетных мышц. Это связано с тем, что адренергические нервные окончания взаимодействуют с β-адренорецепторами, вызывая расширение сосудов.

Аксон-рефлекс возникает при раздражении рецепторов кожи, осуществляющихся в пределах аксона одной нервной клетки, вызывая расширение просвет сосуда в данной области.

Таким образом, нервная регуляция осуществляется симпатическим отделом, который может оказывать как расширяющее, так и суживающее действие. Парасимпатическая нервная система оказывает прямое расширяющее действие.

Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

К веществам местного действия относятся ионы Ca, оказывающие суживающий эффект и участвующие в возникновении потенциала действия, кальциевых мостиков, в процессе сокращения мышц. Ионы К также вызывают расширение сосудов и в большом количестве приводят к гиперполяризации клеточной мембраны. Ионы Na при избытке могут вызвать повышение кровяного давления и задержку воды в организме, изменяя уровень выделения гормонов.


Гормоны оказывают следующее действие:

1) вазопрессин повышает тонус гладкомышечных клеток артерий и артериол, приводя к их сужению;

2) адреналин способен оказывать расширяющее и суживающее действие;

3) альдостерон задерживает Na в организме, влияя на сосуды, повышая чувствительность сосудистой стенки к действию ангиотензина;

4) тироксин стимулирует обменные процессы в гладкомышечных клетках, что приводит к сужению;

5) ренин вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, действуя на белок ангиотензиноген, который превращается в ангиотензин II, ведущий к сужению сосудов;

6) атриопептиды оказывают расширяющее действие.

Метаболиты (например, углекислый газ, пировиноградная кислота, молочная кислота, ионы H) действуют как хеморецепторы сердечно-сосудистой системы, повышая скорость передачи импульсов в ЦНС, что приводит к рефлекторному сужению.

Вещества местного действия производят разнообразный эффект:

1) медиаторы симпатической нервной системы оказывают в основном суживающее действие, а парасимпатической – расширяющее;

2) биологически активные вещества: гистамин – расширяющее действие, а серотонин – суживающее;

3) кинины (брадикинин и калидин) вызывают расширяющее действие;

4) простагландины в основном расширяют просвет;

5) эндотелиальные ферменты расслабления (группа веществ, образуемых эндотелиоцитами) оказывают выраженный местный суживающий эффект.

Таким образом, на сосудистый тонус оказывают влияние местные, нервные и гуморальные механизмы.

Источник: StudFiles.net

Показатели работы сердца рефлекторно изменяются в зависимости от напряжения О2 и СО2 в крови, от объема протекающей крови, от эмоционального состояния и физической нагрузки. Так, при физической нагрузке ударный объем может увеличиться в 2 – 3 раза, частота сокращений – в 3 – 4 раза, минутный объем кровообращения – в 4 – 5 раз. Механизмы регуляции работы сердца включают в себя интракардиальные и экстракардиальные части.

Интракардиальные механизмы в свою очередь подразделяются на миогенные (внутриклеточные) и нервные (за счет внутрисердечной нервной системы).

Внутриклеточные механизмы обусловлены свойствами кардиомиоцитов и лежат в основе закона Франка – Старлинга: чем больше растягивается миокард во время диастолы, тем сильнее он сокращается во время систолы, т.е. чем больше крови поступает в желудочки, тем сильнее они потом сокращаются. Феномен Анрепа заключается в том, что чем больше сопротивление выбросу крови из желудочков (например, при сужении аорты), тем сильнее происходит сокращение желудочков. Феномен Боудича (или феномен лестницы) проявляется в том, что чем больше частота сердечных сокращений, тем сильнее сила сокращений.

Нервные внутрисердечные механизмы осуществляются рефлексами, дуги которых замыкаются в пределах сердца.

Экстракардиальные механизмы подразделяются на нервные и гуморальные механизмы, которые осуществляются за счет структур ЦНС, внесердечных вегетативных ганглиев, желез внутренней секреции. Экстракардиальные нервные влияния осуществляются вегетативной нервной системой. Парасимпатические волокна в составе блуждающего нерва оказывают угнетающее влияние на частоту и силу сердечных сокращений, а также понижают возбудимость и проводимость сердечной мышцы. Сердце находится под постоянным тормозным влиянием со стороны блуждающего нерва.

Симпатическая иннервация сердца осуществляется симпатическими волокнами в основном через β-адренорецепторы, активация которых вызывает увеличение силы и частоты сердечных сокращений. Ее влияние, в отличие  от влияния блуждающего нерва, проявляется периодически.

Регуляция работы сердца может осуществляться благодаря собственным рефлексам сердечно-сосудистой системы, которые возникают при раздражении рецепторов самой сердечно-сосудистой системы. Например, при снижении давления в аорте происходит рефлекторное увеличение частоты сердцебиений, при недостатке кислорода развивается рефлекторная тахикардия, а при дыхании чистым О2 – брадикардия. Эти реакции очень чувствительны: увеличение частоты сердцебиения наблюдается уже при снижении напряжения кислорода всего на 3 %, когда никаких признаков гипоксии в организме еще не обнаруживается. Они осуществляются посредством артериальных хеморецепторов, реагирующих на изменения содержания О2 в крови. При увеличении давления и растяжения полых вен и правого предсердия частота и сила сердечных сокращений увеличиваются (рефлекс Бейнбриджа).

Есть еще и сопряженные кардиальные рефлексы, обусловленные раздражением рефлексогенных зон, не принимающих прямого участия в регуляции кровообращения. Например, рефлекс Гольца: урежение сердцебиений (вплоть до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости (при проведении операций на брюшной полости, при нокауте у боксеров). Рефлекторная остановка сердца может быть при резком охлаждении кожи живота (например, при нырянии в холодную воду). Также брадикардия имеет место при надавливании на глазные яблоки (рефлекс Ашнера).

Влияние ЦНС на работу сердца осуществляется через регуляторное воздействие гипоталамуса, лимбической системы и коры больших полушарий. В гипоталамусе находятся высшие центры регуляции вегетативных функций, которые влияют на активность симпатической и парасимпатической систем. Лимбическая система регулирует эмоциональные реакции, которые влияют на работу сердца.

Гуморальная регуляция осуществляется через систему эндокринных желез и выделение биологически активных веществ. Прямое или опосредованное действие на сердце оказывают практически все биологически активные вещества, содержащиеся в плазме крови. Например, гормоны мозгового вещества надпочечников адреналин, норадреналин вызывают усиление и учащение сердцебиений. Кортикостероиды, вазопрессин, глюкагон, тироксин действуют слабее, чем адреналин, но также увеличивают силу сердечных сокращений.

Сердце очень чувствительно к ионному составу протекающей крови. Недостаток в крови ионов калия, например, в результате действия мочегонных препаратов, может приводить к нарушениям сердечного ритма, недостаток кальция приводит к снижению силы сердечных сокращений.

Источник: edu.grsu.by

Факторы гуморальной регуляции делят на две группы:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца (положительный инотропный эффект). При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. При повышении их концентрации наблюдается положительный батмотропный и дромотропный эффект. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации. Однако небольшое повышение содержания K стимулирует коронарный кровоток. В настоящее время обнаружено, что при увеличении уровня K по сравнению с Ca наступает снижение работы сердца, и наоборот.

Гормон адреналин увеличивает силу и частоту сердечных сокращений, улучшает коронарный кровоток и повышает обменные процессы в миокарде.

Тироксин (гормон щитовидной железы) усиливает работу сердца, стимулирует обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются. К ним относятся медиаторы. Например, ацетилхолин оказывает пять видов отрицательного влияния на деятельность сердца, а норадреналин – наоборот. Тканевые гормоны (кинины) – вещества, обладающие высокой биологической активностью, но они быстро разрушаются, поэтому и оказывают местное действие. К ним относятся брадикинин, калидин, умеренно стимулирующие сосуды. Однако при высоких концентрациях могут вызвать снижение работы сердца. Простагландины в зависимости от вида и концентрации способны оказывать различные влияния. Метаболиты, образующиеся в ходе обменных процессов, улучшают кровоток.

Таким образом, гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

Следующая глава >

Источник: med.wikireading.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector