Опсс сердце


Общее периферическое сосудистое сопротивление

Артерио́лы — мелкие артерии, по току крови непосредственно предшествующие капиллярам. Характерная их особенность — преобладание в сосудистой стенке гладкомышечного слоя, благодаря которому артериолы могут активно менять величину своего просвета и, таким образом, сопротивление. Участвуют в регуляции общего периферического сосудистого сопротивления (ОПСС).

  • 1 Физиологическая роль артериол в регуляции кровотока
  • 2 Регуляция тонуса артериол
    • 2.1 Локальная регуляция сосудистого тонуса
    • 2.2 Системные гормоны, регулирующие сосудистый тонус
    • 2.3 Сосудосуживающие и сосудорасширяющие нервы
  • 3 Участие артериол в патофизиологических процессах
    • 3.1 Воспаление и аллергические реакции
    • 3.2 Артериальная гипертензия

Физиологическая роль артериол в регуляции кровотока

В масштабе организма, от тонуса артериол зависит общее периферическое сопротивление, которое, наряду с ударным объёмом сердца определяет величину артериального давления.

Кроме того, тонус артериол может изменяться локально, в пределах данного органа или ткани. Локальное изменение тонуса артериол, не оказывая заметного влияния на общее периферическое сопротивление, будет определять величину кровотока в данном органе. Так, тонус артериол заметно снижается в работающих мышцах, что приводит к увеличению их кровоснабжения.

Регуляция тонуса артериол

Поскольку изменение тонуса артериол в масштабе целостного организма и в масштабе отдельных тканей имеет совершенно различное физиологическое значение, существуют как локальные, так и центральные механизмы его регуляции.

Локальная регуляция сосудистого тонуса

В отсутствие всяких регуляторных воздействий изолированная артериола, лишенная эндотелия, сохраняет некоторый тонус, зависящий от самих гладких мышц. Он называется базальным тонусом сосуда. На него могут оказывать влияние такие факторы среды, как pH и концентрация CO2 (снижение первой и повышение второй приводят к уменьшению тонуса). Эта реакция оказывается физиологически целесообразной, так как следующее за локальным снижением тонуса артериол увеличение местного кровотока, собственно, и приведет к восстановлению тканевого гомеостаза.


Далее, эндотелий сосудов постоянно синтезирует как сосудосуживающие (прессорные) (эндотелин), так и сосудорасширяющие (депрессорные) факторы (оксид азота NO и простациклин).

При повреждении сосуда тромбоциты выделяют мощный сосудосуживающий фактор тромбоксан A2, что приводит к спазму поврежденного сосуда и временной остановке кровотечения.

Напротив, медиаторы воспаления, такие, как простагландин E2 и гистамин вызывают снижение тонуса артериол. Изменение метаболического состояния ткани может менять баланс прессорных и депрессорных факторов. Так, снижение pH и увеличение концентрации CO2 смещает баланс в пользу депрессорных влияний.

Системные гормоны, регулирующие сосудистый тонус

Гормон нейрогипофиза вазопрессин, как явствует из его названия (лат. vas — сосуд, pressio — давление) оказывает некоторое, хотя и скромное, сосудосуживающее действие. Гораздо более мощным прессорным гормоном является ангиотензин (греч. ангио — сосуд, тензио — давление) — полипептид, который формируется в плазме крови при снижении давления в артериях почек. Весьма интересным действием на сосуды обладает гормон мозгового вещества надпочечников адреналин, который продуцируется при стрессе и метаболически обеспечивает реакцию «борьбы или бегства». В гладких мышцах артериол большинства органов имеются α-адренорецепторы, вызывающие сужение сосудов, однако в артериолах скелетных мышц и головного мозга преобладают β2-адренорецепторы, которые вызывают снижение сосудистого тонуса. В результате, во-первых, возрастает общее сосудистое сопротивление и, следовательно, артериальное давление, а во-вторых, сопротивление сосудов скелетных мышц и мозга снижается, что приводит к перераспределению кровотока в эти органы и резкое увеличение их кровоснабжения.


Сосудосуживающие и сосудорасширяющие нервы

Все, или почти все, артериолы организма получают симпатическую иннервацию. Симпатические нервы в качестве нейромедиатора имеют катехоламины (в большинстве случаев норадреналин) и имеют сосудосуживающее действие. Поскольку аффинность β-адренорецепторов к норадреналину мала, то даже в скелетных мышцах при действии симпатических нервов преобладает прессорный эффект.

Парасимпатические сосудорасширяющие нервы, нейромедиаторами которых являются ацетилхолин и оксид азота, встречаются в организме человека в двух местах: слюнных железах и пещеристых телах. В слюнных железах их действие приводит к увеличению кровотока и усилению фильтрации жидкости из сосудов в интерстиций и далее к обильной секреции слюны, в пещеристых телах снижение тонуса артериол под действием сосудорасширяющих нервов обеспечивает эрекцию.

Участие артериол в патофизиологических процессах

Воспаление и аллергические реакции

Важнейшая функция воспалительной реакции — локализация и лизис чужеродного агента, вызвавшего воспаление.


нкции лизиса выполняют клетки, доставляющиеся в очаг воспаления током крови (главным образом, нейтрофилы и лимфоциты. Соответственно, оказывается целесообразным увеличить в очаге воспаления локальный кровоток. Поэтому «медиаторами воспаления» служат вещества, имеющие мощный сосудорасширяющий эффект — гистамин и простагландин E2. Три из пяти классических симптомов воспаления (покраснение, отёк, жар) вызваны именно расширением сосудов. Увеличение притока крови — следовательно, краснота; рост давления в капиллярах и увеличение фильтрации из них жидкости — следовательно, отёк (впрочем, в его формировании участвует и рост проницаемости стенок капилляров), увеличение притока нагретой крови от ядра тела — следовательно, жар (хотя здесь, возможно, не меньшую роль играет увеличение скорости обмена веществ в очаге воспаления).

Однако, гистамин, кроме защитной воспалительной реакции, является главным медиатором аллергий.

Это вещество секретируется тучными клетками, когда сорбированные на их мембранах антитела связываются с антигенами из группы иммуноглобулинов E.

Аллергия на какое-то вещество возникает, когда против него нарабатывается достаточно много таких антител и они массово сорбируются на тучные клетки в масштабах организма. Тогда, при контакте вещества (аллергена) с этими клетками, они секретируют гистамин, что вызывает по месту секреции расширение артериол, с последующими болью, покраснением и отеком. Таким образом, все варианты аллергии, от насморка и крапивницы, до отёка Квинке и анафилактического шока, в значительной мере оказываются связаны с гистамин-зависимым падением тонуса артериол. Разница состоит в том, где и насколько массивно происходит это расширение.


Особенно интересным (и опасным) вариантом аллергии является анафилактический шок. Он возникает, когда аллерген, обычно после внутривенной или внутримышечной инъекции, распространяется по всему телу и вызывает секрецию гистамина и расширение сосудов в масштабах организма. В этом случае максимально наполняются кровью все капилляры, но их общая ёмкость превышает объём циркулирующей крови. В результате, кровь не возвращается из капилляров в вены и предсердия, эффективная работа сердца оказывается невозможной и давление падает до нуля. Реакция эта развивается в течение нескольких минут и ведёт к гибели больного. Наиболее эффективное мероприятие при анафилактическом шоке — внутривенное введение вещества, обладающего мощным сосудосуживающим действием — лучше всего норадреналина.

Источник: dic.academic.ru

Одним из самых важных компонентов в определении артериального давления в сосудистой системе, является стенка артерий мышечного типа, или резистивных сосудов. Они, будучи периферийными по отношению к сердцу отделами кровеносной системы, находятся в состоянии постоянного противостояния тому объему крови, который выкидывается сердцем.


это, кстати, есть второй обусловливающий давление фактор. Таким образом, системное артериальное давление (САД) складывается из общего периферического сопротивления сосудов (ОПСС), создаваемого тонусом гладких миоцитов артерий среднего, мелкого калибра и артериол, и величиной сердечного выброса (СВ), «заведующего» объемной скоростью кровотока. Тем, кому не чужды точные науки, легко будет запомнить следующую формулу, согласно которой специалистами по системной гемодинамике предложено высчитывать любой из этих показателей:

САД = СВ X ОПСС

Системное артериальное давление — показатель, весьма дифференцированный в зависимости от удаленности измеряющего прибора от «генератора давления и расхода крови» — сердца. Он прямо пропорционален ОПСС, различному, разумеется, в аорте и капиллярах, где САД поэтому соответственно равно 130—135 и 10—30 мм рт.ст. Из всех вариантов САД (аортального, артериального, артериолярного и так далее) врачами было выбрано артериальное давление (АД).



Первая попытка его измерения относится к середине XIX в., когда французский физик и врач Жан Луи Мари Пуазейль (чей гидродинамический закон с содроганием вспоминают студенты-первокурсники), проколов сердце кролика с помощью U-образной стеклянной трубки, заполненной ртутью, постарался определить нагнетательную мощь левого желудочка.


у это удалось, но, сами понимаете, вряд ли можно считать приемлемым этот кровавый, или прямой, способ. Поэтому начались поиски других бескровных, или косвенных, методов. Существеннейшим этапом на этом пути оказалось предложение итальянского педиатpa С. Рива-Роччи (1896 г.) накладывать на плечо эластическую манжету, соединенную с грушей и градуированным стеклянным столбиком с ртутью. Этот прибор получил название тонометра (от греч, tonos— напряжение и metron — мера). Надувая манжету подающимся грушей воздухом до определенной отметки на ртутной шкале, пережимали плечевую артерию настолько, что переставал определяться пульс на руке. Начиная выпускать воздух из манжеты, регистрировали то деление шкалы, на уровне которого снова «пробивался» пульс. Это значило, что до сих пор неизвестное нам давление в артерии в эту секунду оказалось пусть на несколько миллиметров, но все же больше известного нам по градуированному столбику давления в надувной манжете. Если же этими несколькими миллиметрами пренебречь, то эти два давления можно приравнять — это и есть артериальное давление.

Распространенные ошибки при измерении артериального давления




Каждый пульсовой удар представляет собой колебание стенки артерии от полученного еще аортой во время систолы толчка. Интересно, что дрожание аортальной стенки от удара по ней крови, вырвавшейся из желудочка, распространяется по кровеносной системе куда быстрее, чем сама кровь. Так, самая высокая линейная скорость кровотока достигается в аорте — до 0,5 м/с, а пульсовая волна разлетается от аорты до самых мелких и отдаленных веточек со скоростью 5,5—9,5 м/с. То есть практически пульсовой удар, определяемый врачом на запястье больного, по времени совпадает с систолой, тогда как данный ударный объем еще только начинает свой путь по сосудистому руслу.



Менее десятилетия спустя, в 1905 г. российский хирург царской армии Н. С. Коротков модифицировал метод Рива-Роччи, предложив после раздувания манжеты тонометра «слушать пульс» стетоскопом (чаще на лучевой артерии). Это открыло перед врачами новые возможности, и способом этим пользуются по сей день. Видите ли, сначала давление в манжете больше, чем в артерии, и пульс не выслушивается. По мере выпускания воздуха в какой-то момент давление крови, выброшенной систолой из сердца, становится равной манжеточному, и врач слышит появление первых ударов, знаменующих систолическое давление крови, пробивающейся через сдавленный сосуд. То есть этот показатель характеризует сердечный выброс, поэтому систолическое давление иногда называют сердечным.


м меньше давление в манжете, тем легче кровь под ней проскальзывает и тем громче прослушиваются удары. И вдруг… все обрывается, артерия становится «беззвучной». Связано это с тем, что во время диастолы ни о каком СВ говорить не приходится и давление определяется второй составляющей нашей формулы —ОПСС. Когда же давление в манжете уравнивается с силой периферического сопротивления, пропадают рождаемые соприкосновением крови о препятствие звуковые явления, так как самого препятствия более не существует. Поэтому диастолическое давление, определяющееся фактически тонусом артериальной стенки, называют также сосудистым. Еще один показатель используют специалисты — пульсовое давление, высчитывающееся как разница систолического и диастолического.



Теперь о нормах. После обследования огромного числа лиц удалось вывести средние значения. Так, для систолического давления они составили 120—125 мм, для диастолического — 70—75 мм, а для пульсового соответственно —около 50 мм рт.ст. Но это лишь средние значения. В медицине нет ничего более относительного, чем понятие «нормы». Каждый раз, обследуя нового пациента, перед тем, как взяться за тонометр, мы обязательно спрашиваем о его давлении, о тех цифрах, к которым он адаптирован. У врачей даже есть термин, возможно, не совсем корректный с точки зрения физиологов, но вполне действенный для клиницистов — «рабочее давление», которое у одних 120/70 мм рт.ст., у других (иногда у молодых женщин, подростков) — ниже, а у третьих (например, у пожилых людей) — выше средних.

Нормы артериального давления по возрастам


Почему так важно это знать? Всё очень просто, поспешив с решением, можно снизить нормальное для старика давление, чем ввести его в полуобморочное состояние. И наоборот, не принять мер в отношении девушки, адаптированной к низкому давлению, при регистрации, казалось бы, нормальных показаний.



Справедливости ради следует отметить, что в венах тоже есть давление, но оно несопоставимо с артериальным. Во-первых, тонус стенок (ОПСС) здесь меньше, во-вторых, сила систолического толчка, отправляющего кровь по кровеносной системе (СВ), гасится предыдущими звеньями «цепи», то есть обе составляющих формулы определения САД уступают таковым в артериальном русле. В венах конечностей оно составляет 5—9 мм рт.ст., а в крупных венах грудной клетки давление еще ниже и зависит от фаз дыхания. на выдохе 2—5 мм, а на вдохе — вообще отрицательное.

Центральное венозное давление (ЦВД) определяют в правом предсердии, в котором во время диастолы регистрируются значения от 0 до —4 мм рт.ст. Именно эти отрицательные значения присасывающе действуют на венозную кровь, определяя так называемый венозный возврат к сердцу. Достаточно увеличить ЦВД на 1 мм, и венозный возврат снизится на 14%, а повышение диастолического ЦВД до 7 мм рт.ст. просто аннулирует венозный возврат, приводя к катастрофическому застою крови в венах большого круга (собственно, эти механизмы и лежат в основе развития сердечной недостаточности). Поэтому, измерение венозного давления в миллиметрах ртутного столба оказывается слишком грубым, когда в одном-двух делениях тонометра кроется огромный спектр гемодинамических расстройств. Из-за этого принято использовать в этом случае прибор, заполненный не ртутью, а водой. Контроль при этом значительно облегчается: в среднем ЦВД держится в пределах от 40 до 120 мм вод. ст., подвергаясь колебаниям в течение суток и завися от мышечной нагрузки. В покое оно меняется мало.



Артериальное давление определяется двумя основными морфофункциональными составляющими:
1. Величиной сердечного выброса (систолическое давление);
2. Тонусом гладких миоцитов резистивных сосудов, обусловливающих периферическое сопротивление (диастолическое давление).

В венах давление очень низкое, а центральное венозное давление в правом предсердии вообще отрицательное, что обеспечивает присасывание крови из полых вен и их притоков — венозный возврат.

Пульс — колебание стенки артерии, передающееся от аорты после систолического выброса в нее крови.









Источник: tardokanatomy.ru

Таблица – Гемодинамические показатели сердечно-сосудистой системы

Показатели   Сокращенные  обозначения  показателей Нормальные значения
Ударный объем УО 60,0—100,0 мл
Сердечный выброс

(син.: минутный объем сердца)

СВ (МОС) 4,0—6,0 л/мин
Сердечный индекс СИ 2,5—3,6 л/мин/м2
Фракция выброса ФВ 55-75%
Центральное венозное давление ЦВД 40—120 мм вод. ст
Диастолическое давление в легочной артерии ДДЛА 9—16 мм рт.ст.
Давление в левом предсердии ДЛП 1-10 мм рт.ст.
Давление заклинивания легочной артерии ДЗЛА 6—12 мм рт.ст.
Диастолическое давление в аорте ДДА 70—80 мм рт.ст.
Системное артериальное давление: Артериальное давление систолическое Артериальное давление диастолическое САД
АД систол.
АД диаст.
100—139 мм рт.ст.

60—89 мм рт.ст.

Артериальное давление (среднее) АД средн. 70—105 мм рт.ст.
Общее периферическое сосудистое сопротивление ОПСС 1200—1600 дин-с-см-5
Легочное сосудистое сопротивление ЛСС 30—100 дин-с-см’5
 Показатель сократимости миокарда (определяется в фазу изоволюмического сокращения)  dp/dt макс  мм рт.ст./с
 Показатель расслабляемости миокарда (определяется в фазу изоволюмического расслабления)  dp/dt макс  мм рт.ст./с
 Частота сердечных сокращений  ЧСС  60—70 уд. /мин (муж.);

70—80 уд./мин (жен.)

Ударный объем

Ударный объем (УО) — это объем крови, поступающий в аорту во время одной систолы (одного цикла сокращения) левого желудочка. УО представляет собой разницу между конечно- диастолическим объемом (КДО) и конечно-систолическим объемом (КСО) крови в левом желудочке: УО = (КДО – КСО) мл.

Сердечный выброс

Сердечный выброс (СВ) (наряду с СВ нередко используют понятие «минутный объем сердца» — МОС). Если наполнение желудочков поддерживается на достаточном уровне, то величина сердечного выброса при любом ударном объеме зависит от частоты сердечных сокращений (ЧСС). Формула расчета: СВ или МОС= (УО • ЧСС) л/мин. Таким образом, СВ является функцией УО и ЧСС. Увеличение СВ при тахикардии требует более эффективного диастолического наполнения сердца.

При увеличении частоты сердечных сокращений относительное время диастолы уменьшается по сравнению с продолжительностью систолы. Однако в нормально функционирующем сердце, которое сокращается в пределах 170 уд/мин, его наполнение не уменьшается в связи с укорочением диастолы.

В интактном сердце при тахикардии процесс расслабления сердечной мышцы ускоряется, что обеспечивает более быстрое и полное наполнение сердца кровью в течение укороченных диастолических периодов. Этот эффект частично опосредуется через стимуляцию p-рецепторов катехоламинами, которые повышают релаксацию кардиомиоцитов за счет ускоренного удаления из них внутриклеточного Са2+. При чрезмерной тахикардии (более 170 уд/мин) подобная полная диастолическая релаксация может не произойти, а следовательно и дальнейшее увеличение СВ.

Сердечный индекс

Сердечный индекс (СИ). В современной медицине показатель СВ нормализован с целью придания ему свойства сравнимости, необходимого для сопоставления результатов его измерения у разных индивидумов и в различных условиях функционирования сердца. Нормализованный показатель был назван «сердечный индекс», т.е. СИ — это расчетный показатель, размер которого у здоровых людей зависит от пола, возраста, массы тела.

Нормализация заключается в учете (нивелировании) влияния индивидуальных данных, биологических особенностей конкретного человека. Интегративным критерием таких особенностей была выбрана площадь поверхности тела (м2) обследуемого индивидума. Отсюда формула для расчета: СИ= СВ/ площадь тела (л/мин/м2), т. е. размерность СИ выражается в литрах в минуту из расчета на единицу площади поверхности тела (м2). Для расчета площади поверхности тела используют номограмму и целый ряд формул. Среди них, например, формула Дюбуа:

S = В0,423 х Р0-725 х 0,007184,

где S — площадь поверхности тела, м2; В — масса тела, кг; Р — рост, см; 0,007184 — постоянный коэффициент.

Номограмма для определения площади тела взрослого человека

По существу СИ представляет собой меру потока крови из сердца и в этом качестве является основным показателем его насосной функции. У здорового человека в состоянии покоя индекс считается нормальным в пределах 2,5— 3,6 л/мин/м2. Уменьшение возможностей сердца выполнять свою насосную функцию при различных формах патологии ведет к снижению СИ.

Таким образом, показатель СИ более адекватно, чем СВ, характеризирует гемодинамические возможности конкретного (а не некого виртуального) здорового организма и в условиях развития сердечной недостаточности. Именно этот показатель используют для объективной оценки степени ее выраженности. В этом качестве СИ является одним из основных классификационных критериев сердечной недостаточности.

Фракция выброса (ФВ)

Этот показатель характеризует степень эффективности работы сердца во время систолы. В основном принято измерять ФВ левого желудочка — основного компонента сердечного насоса. ФВ выражают в виде процента УО от объема крови в желудочке при максимальном его наполнении во время диастолы. Например, если в левом желудочке находилось 100 мл, а во время систолы в аорту поступило 60 мл крови, то ФВ равняется 60%.

Как правило, ФВ вычисляют по формуле:

ФВ = (КДО – КСО) / КДО х 100 (%),

где КДО — конечный диастолический объем, КСО — конечный систолический объем.

Наряду с расчетом ФВ используют аппаратные методы ее определения: эхокардиографию, рентгеноконтрастную или изотопную вентрикулографию.

Нормальное значение ФВ левого желудочка равно 55—75%. С возрастом имеется тенденция к снижению данного показателя. Принято считать, что величина ФВ ниже 45—50% свидетельствует о недостаточности насосной функции сердца.

Показатель ФВ при различных сердечно-сосудистых заболеваниях не только диагностически, но и прогностически значим. Однако он имеет определенные ограничения, т.к. зависит от сократимости миокарда и от других факторов (пред-, постнагрузки, частоты и ритмичности сердечных сокращений).

Давление заклинивания легочной артерии (ДЗЛА)

Для объективной оценки насосной функции левого сердца необходимо измерять кровяное давление в системе легочных вен — при левожелудочковой недостаточности оно повышается. Однако катетеризация легочных вен достаточно сложная процедура и включает ретроградное (против тока крови) проведение катетера из какой-либо периферической артерии (например, бедренной артерии) в аорту, затем в левый желудочек, левое предсердие и наконец через митральное отверстие в легочную вену. Выполнение такого диагностического маневра чревато различными осложнениями — перфорацией сосудов, самозавязыванием катетера в узел, внесением «катетерной» инфекции, аритмиями, тромбообразова-нием и др., поэтому с целью определения уровня кровяного давления в легочных венах решено проводить катетеризацию не легочных вен, а легочной артерии. Это более простая и безопасная процедура для оценки насосной функции левого сердца. При ее проведении используют т. н. плавающий катетер Свана—Ганца (Swan Н., Ganz W.), на конце которого расположен небольшой баллончик, раздуваемый воздухом или изотоническим раствором натрия хлорида.

Вначале катетер проводят в верхнюю полую вену, используя технику катетеризации подключичной и внутренней яремной вен. После попадания катетера в правое предсердие баллончик немного раздувают. При этом катетер приобретает повышенную «плавучесть» и подобно лодочке под парусом практически самостоятельно током крови заносится в легочную артерию. Затем воздух (или изотонический раствор натрия хлорида) из баллончика выпускают и продвигают конец катетера в одно из разветвлений легочной артерии II и III порядка до упора, т. е. до капиллярной сети.

После этого вновь раздувают баллончик, обтурируя («заклинивая») сосуд, что позволяет зарегистрировать так наз. легочно-капиллярное давление или, точнее, давление, передаваемое через систему легочных вен и капилляров из левого предсердия в катетер.

Измеряемое при этом давление получило название «давление заклинивания легочной артерии» (ДЗЛА). На всех этапах продвижения катетера (правое предсердие, правый желудочек, легочная артерия и ее бифуркации) контролируют изменения кровяного давления с помощью этого же катетера для отслеживания его местонахождения.

ДЗЛА является одним из основных гемодинамических показателей насосной функции сердца, который, за некоторым исключением, фактически всегда соответствует давлению в левом предсердии и конечно-диастолическому давлению в левом желудочке, отражая, таким образом, состояние легочного капиллярного кровообращения и риск развития кардиогенного отека легких у пациентов с левожелудочковой недостаточностью.

Центральное венозное давление (ЦВД)

это давление крови в правом предсердии; показатель отражает преднагрузку правого сердца (желудочка). Ее величина зависит от объема крови, поступающей в правое сердце (чем больше возврат крови в сердце,тем выше ЦВД), и насосной функции правого сердца. ЦВД прежде всего отражает способность правого желудочка перекачивать весь объем поступающей в него крови, поэтому оно является объективным критерием насосной функции правого сердца.

При правожелудочковой недостаточности ЦВД повышается. Показатель ЦВД используют также для оценки объема циркулирующей крови. При этом необходимо учитывать способность венозной системы активно уменьшать свою емкость под воздействием факторов, регулирующих тонус венозных сосудов.

В условиях развития гиповолемических состояний их компенсаторный спазм может скрывать уменьшение ОЦК и соответственно снижение ЦВД. Известно, что быстрое уменьшение ОЦК на 10%, как правило, не сопровождается падением ЦВД. ЦВД измеряют в правом сердце с помощью катетера, снабженного манометром.

При горизонтальном положении тела нормальный уровень ЦВД находится в пределах 40—120 мм вод. ст. В условиях развития экстремальных состояний организма уровень ЦВД обычно непрерывно контролируется, т.к. ЦВД имеет исключительную ценность в дифференциальной диагностике шоковых состояний, инфарктов миокарда, сердечной недостаточности, выраженных кровопотерь и т.п.

Системное артериальное давление (АД систем.)

Системное артериальное давление (АД систем.) является функцией сердечного выброса (СВ) и общего периферического сопротивления сосудов (ОПСС):

АД систем. — f (СВ, ОПСС),

где f — функция (математическое понятие, отражающее связь между элементами множества).

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Артериальное давление систолическое

Артериальное давление систолическое (АД систол.), определяемое в период систолы левого желудочка сердца, отражает минутный объем сердца: МОС = f (ударный объем сердца, частота/ритм/сила сокращений сердца, объем циркулирующей крови);

Артериальное давление диастолическое

Артериальное давление диастолическое (АД диастол.), измеряемое в период диастолы левого желудочка, отражает общее периферическое сопротивление сосудов (ОПСС): ОПСС = f (диаметр [тонус] резистивных сосудов, реологические свойства крови);

Пульсовое артериальное давление

Пульсовое артериальное давление (АД пульс.) представляет собой (в первом приближении) разницу между уровнями систолического и диастолического давлений.

Артериальное давление среднее

Артериальное давление среднее (АД средн.) — в упрощенном варианте представляет собой среднее арифметическое между уровнями систолического и диастолического давлений. Существует ряд способов расчета уровня АД среди.:

1) АД средн. = (АД систол, х Т систол. + АД диастол, х Т диаст.) / Т серд. цикла, где Т — длительность систолы, диастолы или сердечного цикла;

2) АД средн. = АД диаст. + 1/3 АД пульс, (формула Хикема);

3) АД средн. = АД диаст. + 0,427 х АД пульс, (формула Вецлера и Богера; считают наиболее точной для расчета АД среда.);

Системное венозное давление (ВД средн.) принято приравнивать к среднему давлению в правом предсердии.

Общее периферическое сосудистое сопротивление (ОПСС). Этот показатель отражает суммарное сопротивление прекапиллярного русла и зависит как от сосудистого тонуса, так и от вязкости крови. На величину ОПСС влияет характер ветвления сосудов и их длина, поэтому обычно чем больше масса тела, тем меньше ОПСС.

В cвязи с тем, что для выражения ОПСС в абсолютных единицах требуется перевод давления мм рт. ст. в дин/см2, формула для расчета выглядит следующим образом:

ОПСС = (АД систем, х 80) / СВ [дин хсх см-5]; 80 – константа для перевода в метрическую систему.

Источник: cardio-bolezni.ru

Периферическое сопротивление сосудов (ОПСС)

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:

Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.

На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R. Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе. Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.

Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.

Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз. Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку. Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.

Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол. Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол. Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.

Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.

Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.

(Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).

Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.

Определение основных понятий в интенсивной терапии

Основные понятия

Артериальное давление характеризуется показателями систолического и диастолического давления, а также интегральным показателем: среднее артериальное давление. Среднее артериальное давление рассчитывается как сумма одной трети пульсового давления (разницы между систолическим и диастолическим) и диастолического давления.

Среднее артериальное давление само по себе не описывает адекватно функцию сердца. Для этого используются следующие показатели:

Сердечный выброс: объем крови, изгоняемой сердцем за минуту.

Ударный объём: объем крови, изгоняемой сердцем за одно сокращение.

Сердечный выброс равен ударному объёму, умноженному на ЧСС.

Сердечный индекс – это сердечный выброс, с коррекцией на размеры пациента (на площадь поверхности тела). Он точнее отражает функцию сердца.

Преднагрузка

Ударный объём зависит от преднагрузки, постнагрузки и сократимости.

Преднагрузка – это мера напряжения стенки левого желудочка в конце диастолы. Она трудно поддаётся прямому количественному определению.

Непрямыми показателями преднагрузки служат центральное венозное давление (ЦВД), давление заклинивания лёгочной артерии (ДЗЛА) и давление в левом предсердии (ДЛП). Эти показатели называют «давлениями наполнения».

Конечно-диастолический объём левого желудочка (КДОЛЖ) и конечно-диастолическое давление в левом желудочке считаются более точными показателями преднагрузки, однако они редко измеряются в клинической практике. Ориентировочные размеры левого желудочка могут быть получены с помощью трансторакального или (точнее) чреспищеводного УЗИ сердца. Кроме того, конечно-диастолический объём камер сердца высчитывается с помощью некоторых методов исследования центральной гемодинамики (PiCCO).

Постнагрузка

Постнагрузка – это мера напряжения стенки левого желудочка во время систолы.

Она определяется преднагрузкой (которая обусловливает растяжение желудочка) и сопротивлением, которое встречает сердце при сокращении (это сопротивление зависит от общего периферического сопротивления сосудов (ОПСС), податливости сосудов, среднего артериального давления и от градиента в выходном тракте левого желудочка).

ОПСС, которое, как правило, отражает степень периферической вазоконстрикции, часто используется как непрямой показатель постнагрузки. Определяется при инвазивном измерении параметров гемодинамики.

Сократительная способность и комплайнс

Сократимость – это мера силы сокращения миокардиальных волокон при определённых пред- и постнагрузке.

Среднее артериальное давление и сердечный выброс часто используются как непрямые показатели сократимости.

Комплайнс – это мера растяжимости стенки левого желудочка во время диастолы: сильный, гипертрофированный левый желудочек может характеризоваться низким комплайнсом.

Комплайнс трудно количественно измерить в клинических условиях.

Конечно-диастолическое давление в левом желудочке, которое можно измерить во время предоперационной катетеризации сердца или оценить по данным эхоскопии, является непрямым показателем КДДЛЖ.

Важные формулы расчета гемодинамики

Сердечный выброс = УО * ЧСС

Сердечный индекс = СВ/ППТ

Ударный индекс = УО/ППТ

Среднее артериальное давление = ДАД + (САД-ДАД)/3

Общее периферическое сопротивление = ((СрАД-ЦВД)/СВ)*80)

Индекс общего периферического сопротивления = ОПСС/ППТ

Сопротивление лёгочных сосудов = ((ДЛА — ДЗЛК)/СВ)*80)

Индекс сопротивления лёгочных сосудов = ОПСС/ППТ

CВ = сердечный выброс, 4,5-8 л/мин

УО = ударный объем, 60-100 мл

ППТ = площадь поверхности тела, 2- 2,2 м 2

СИ = сердечный индекс, 2,0-4,4 л/мин*м2

ИУО = индекс ударного объема, 33-100 мл

СрАД = Среднее артериальное давление, 70- 100 мм рт.

ДД = Диастолическое давление, 60- 80 мм рт. ст.

САД = Систолическое давление, 100- 150 мм рт. ст.

ОПСС = общее периферическое сопротивление, 800-1 500 дин/с*см 2

ЦВД = центральное венозное давление, 6- 12 мм рт. ст.

ИОПСС = индекс общего периферического сопротивления, 2000-2500 дин/с*см 2

СЛС = сопротивление лёгочных сосудов, СЛС = 100-250 дин/с*см 5

ДЛА = давление в лёгочной артерии, 20- 30 мм рт. ст.

ДЗЛА = давление заклинивания лёгочной артерии, 8- 14 мм рт. ст.

ИСЛС = индекс сопротивления лёгочных сосудов = 225-315 дин/с*см 2

Оксигенация и вентиляция

Оксигенация (содержание кислорода в артериальной крови) описывается такими понятиями, как парциальное давление кислорода в артериальной крови (Pa 02 ) и сатурация (насыщение) гемоглобина артериальной крови кислородом (Sa 02 ).

Вентиляция (движение воздуха в лёгкие и из них) описывается понятием минутный объём вентиляции и оценивается путём измерения парциального давления углекислого газа в артериальной крови (Pa C02 ).

Оксигенация, в принципе, не зависит от минутного объёма вентиляции, если только он не очень низкий.

В послеоперационном периоде основной причиной гипоксии являются ателектазы лёгких. Их следует попытаться устранить до того, как увеличивать концентрацию кислорода во вдыхаемом воздухе( Fi02 ).

Для лечения и профилактики ателектазов применяются положительное давление в конце выдоха (РЕЕР) и постоянное положительное давление в дыхательных путях (СРАР).

Потребление кислорода оценивается косвенно по сатурации гемоглобина смешанной венозной крови кислородом (Sv 02 ) и по захвату кислорода периферическими тканями.

Функция внешнего дыхания описывается четырьмя объёмами (дыхательный объём, резервный объём вдоха, резервный объём выдоха и остаточный объём) и четырьмя ёмкостями (ёмкость вдоха, функциональная остаточная ёмкость, жизненная ёмкость и общая ёмкость лёгких): в ОИТР в повседневной практике используется только измерение дыхательного объёма.

Уменьшение функциональной резервной ёмкости вследствие ателектазов, положения на спине, уплотнения лёгочной ткани (застойные явления) и коллапса лёгких, плеврального выпота, ожирения приводят к гипоксии.СРАР, РЕЕР и физиотерапия направлены на ограничение этих факторов.

Опсс сердце

Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением.

Опсс сердце

Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

Опсс сердце

где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк. используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

Опсс сердце

где Р1—Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332— коэффициент перевода единиц сопротивления в систему CGS.

Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.

Опсс сердце Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.

В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин • с ¦ см. при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200—3000 дин • с • см-5.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Психофизиологическая экспертиза — Лохограф [Восстановленный ролик]

Источник: heal-cardio.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.