Проводящая система сердца физиология


ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА (systema conducens cardiacum, LNH; син. сердечная проводящая система) — комплекс анатомических образований (узлов, пучков и волокон), обладающих способностью генерировать импульс сердечных сокращений и проводить его ко всем отделам миокарда предсердий и желудочков, обеспечивая их координированные сокращения.

Анатомия

В П. с. с. выделяют две взаимосвязанные части: синусно-предсердную и атриовентрикулярную (предсердно-желудочковую). К синусно-предсердной части относят синусно-предсердный узел (nodus sinuatrialis) с отходящими от него пучками сердечных проводящих миоцитов. Атриовентрикулярная часть представлена атриовентрикулярным узлом (nodus atrioventricularis), пучком Гиса, или атриовентрикулярным пучком (предсердно-желудочковый пучок, Т.; fasc. atrioventricularis) с его левой и правой ножками и периферическими разветвлениями — проводящими волокнами Пуркинье (myofibrae conducentes purkinjienses). На рис. 1 представлена схема проводящей системы сердца.

Эмбриология


Формирование основных элементов П. с. с. у эмбриона начинается на стадии трубчатого сердца, в, к-ром,, по данным Венинка (А. С. G. Wenink, 1976), кроме будущего сократительного миокарда, имеются еще четыре морфологически специализированных мышечных кольца: бульбовентрикулярное, атриовентрикулярное, синоатриальное и трункобульбарное. Из этих колец в процессе петлеобразования и формирования камер сердца развиваются все компоненты П. с. с. Бульбовентрикулярное кольцо участвует в образовании атриовентрикулярного пучка и его ножек, атриовентрикулярное — в формировании атриовентрикулярного узла и пучка, синоатриальное кольцо дает начало синусно-предсердному и атриовентрикулярному узлам. Из трункобульбарного кольца формируются структуры, функционирующие только в сердце эмбрионов.

Распространенная ранее теория Молла (F. P. Mall, 1912), согласно к-рой П. с. с. представляет остаток аурикулярного канала, в настоящее время признана несостоятельной.

Синусно-предсердный узел (nodus sinuatrialis), описанный в 1906 г. Кисом и Флеком (A. Keith, М. Flack), является генератором импульсов возбуждения сердечных сокращений (см. Автоматия). Он расположен на верхней поверхности правого предсердия между устьем верхней полой вены и ушком правого предсердия. Узел всегда выявляется макроскопически. Длина его 8—26 мм, ширина 4—13 мм, толщина 1—3 мм. Связанные с узлом пучки сердечных проводящих миоцитов проводят возбуждение к миокарду различных отделов предсердий и атриовентрикулярному узлу.
деляют пучки, направленные к верхней и нижней полым венам, задний межвенозный пучок, описанный в 1906—1907 гг. Венкебахом (К. F. Wenckebach), передний и задний межузловые пучки,, последний был описан в 1909 г. Торелем (Ch. Thorel). Пучок, проводящий возбуждение от узла к левому предсердию и устьям легочных вен, описал в 1913 г. Ю. Тандлер, а пучок, направленный к ушку левого предсердия, обнаружил в 1916 г. Бахманн (J. G. Bachmann). Размеры и положение пучков индивидуально изменчивы, они не всегда выявляются макроскопически, хотя всегда могут быть обнаружены с помощью гистологических методов исследования (см.).

Атриовентрикулярный узел (nodus atrioventricularis) был описан в 1906 г. Таварой (S. Tawara) и Л. Ашоффом. Он располагается в правом фиброзном треугольнике у передневерхней части устья синуса полых вен ниже прикрепления перегородочной створки трехстворчатого клапана. Атриовентрикулярный узел, так же как пучок Гиса и его ножки, всегда выявляется макроскопически (рис. 2). Форма узла чаще округлая. Длина его 3—15 мм, ширина 1—7 мм, толщина 0,5—2 мм. От узла отходит пучок Гиса, который проникает через правый фиброзный треугольник в перепончатую часть межжелудочковой перегородки, разделяясь у верхнего края ее мышечной части на левую и правую ножки. Часть пучка на протяжении от узла до начала деления на ножки называют стволом (truncus), длина его 3—20 мм. Положение пучка в межжелудочковой перегородке индивидуально изменчиво.
вая ножка (crus sinistrum) пучка Гиса длиной 5—27 мм и шириной у места отхождения от ствола 1,5—15 мм располагается под эндокардом на левой поверхности межжелудочковой перегородки и разделяется на одном уровне на 2—4 ветви (rr. cruris), которые переходят в проводящие мышечные волокна Пуркинье. Правая ножка (crus dextrum) располагается под эндокардом на правой поверхности межжелудочковой перегородки в виде одного, значительно более тонкого, чем левая ножка, ствола, от к-рого на всем протяжении отходят ветви к миокарду правого желудочка.

Описаны также добавочные проводящие тракты — пучки Кента, Джеймса, волокна Махейма, которые макроскопически не выявляются.

Кровоснабжение

Синусно-предсердный узел получает артериальную кровь из ветви синусно-предсердного узла (r. nodi sinuatrialis), отходящей чаще от правой коронарной (венечной, Т.) артерии, реже от огибающей ветви (r. circumflexus) левой коронарной артерии. Капиллярная сеть, образованная артериолами, отходящими от ветви синусно-предсердного узла, ориентирована по ходу волокон. Посткапиллярные венулы, образующие густую сеть, формируют 1—3 вены диаметром до 0,5 мм, впадающие в вены стенки верхней полой вены, в вены ушка правого предсердия. Пучки сердечных проводящих миоцитов, связанные с синусно-предсердным узлом, васкуляризируются от близлежащих ветвей коронарных артерий. Кровь в атриовентрикулярный узел поступает из ветви атриовентрикулярного узла (r. nodi atrioventricularis), отходящей чаще от правой коронарной артерии и очень редко от огибающей ветви (r.
rcumflexus) левой коронарной артерии. Отток венозной крови из узла происходит по посткапиллярам и венулам в дренирующие вены, идущие к венечному синусу сердца (sinus coronarius) и к средней вене сердца (v. cordis media). К стволу атриовентрикулярного пучка и его ножкам подходят мелкие артерии и артериолы, идущие от артерии, снабжающей кровью атриовентрикулярный узел, а также от первой перегородочной межжелудочковой ветви (r. mterventricularis septalis I) и передней межжелудочковой ветви (r. interventricularis anterior) левой коронарной артерии. Плотность артериол в атриовентрикулярном узле в 10 раз меньше, чем в пучке. Венозный отток из узла и пучка осуществляется по мелким венам к большой вене сердца (v. cordis magna). Артериолы и венулы в атриовентрикулярном пучке расположены параллельно сердечным проводящим миоцитам. По данным Ван-дер-Хауарта, Струбандта, Верхаге (L. G. Van der Hauwaert, R. Stroobandt, L. Verhaeghe, 1972), анастомозы между сосудистыми образованиями П. с. с. и сосудами межжелудочковой перегородки отсутствуют.

Лимфоотток

Лимф. сосуды и капилляры в атриовентрикулярном узле обнаружил в 1909 г. Карран (E. J. Curran), а в 1976 г. Элиш ка и Элишкова (О. Eliska, М. Eliskova) нашли их в синусно-предсердном узле. По лимф. сосудам лимфа оттекает из П. с. с. к трахеобронхиальным или средостенным лимф. узлам.

Иннервация

П. с. с. иннервируется многочисленными симпатическими, парасимпатическими и чувствительными нервными волокнами интракардиального нервного сплетения (см. Внутрисердечная нервная система; Сердце, анатомия).

Гистология


В состав образований П. с. с., помимо специализированных кардиомиоцитов, входят нервные элементы (нервные стволы различной толщины, состоящие из миелиновых и безмиелиновых нервных волокон, нервные окончания), соединительная ткань с сосудами. В отличие от сократительного миокарда для П. с. с. характерно количественное преобладание соединительнотканных и нервных элементов над мышечными и сосудистыми. По данным Труэкса (R. Truex) с соавт. (1974), кардиомиоциты П. с. с. при общепринятых гистол. окрасках выглядят светлее, чем клетки сократительного миокарда и отличаются от них по размерам. С помощью электронно-микроскопических исследований установлено, что в этих клетках хорошо развиты комплекс Гольджи (см. Гольджи комплекс), локализующийся около ядра или субсарколеммально, зернистая и незернистая эндоплазматическая сеть (см. Эндоплазматический ретикулум), рибосомы (см.); имеются мелкие округлые митохондрии (см.), небольшое количество лизосом (см.), содержатся гранулы гликогена. Характерной особенностью специализированных кардиомиоцитов является наличие туннелевидных инвагинаций сарколеммы, содержащих соединительнотканные и нервные элементы, выраженных субсарколеммальных цистерн, комплекса миофиламентов с полирибосомами. В зависимости от размера, формы клеток, количества и положения миофибрилл выделяют четыре типа специализированных кардиомиоцитов.
етки I, II, III типов обнаружены в составе П. с. с. практически у всех млекопитающих, в т. ч. и у человека. Они имеют меньший размер, чем клетки сократительного миокарда. К клеткам I типа относят кардиомиоциты веретеновидной формы, которые по сравнению с кардиомиоцитами сократительного миокарда содержат меньшее количество неправильно ориентированных миофибрилл. Кардиомиоциты II типа имеют неправильную отростчатую форму, содержат примерно такое же количество миофибрилл, как и клетки сократительного миокарда, но в отличие от последнего миофибриллы в кардиомиоцитах II типа расположены беспорядочно.

К кардиомиоцитам III типа относят клетки веретеновидной формы с малым количеством упорядоченно расположенных вдоль длинной оси клетки миофибрилл и большим количеством гранул гликогена. Клетки IV типа (клетки Пуркинье) встречаются лишь у некоторых видов животных. У большинства млекопитающих и человека имеются клетки, подобные клеткам Пуркинье, которые сходны с клетками Пуркинье по функциональным показателям.

Разные части П. с. с. содержат различные типы специализированных кардиомиоцитов. Синусно-предсердный узел состоит из клеток I и II типов, атриовентрикулярный узел — из клеток II и III типов, пучок Гиса содержит клетки всех типов, ножки этого пучка и его концевые разветвления состоят из клеток III типа и клеток, подобных клеткам Пуркинье, или только из последних.

Различают несколько видов контактов между кардиомиоцитами П. с. с. С помощью вставочных дисков и нексусов контактируют между собой гл. обр. клетки II типа, а также клетки III типа. Между клетками I типа эти контакты редки, для них характерны простые контакты. Простые контакты встречаются также и между всеми другими типами кардиомиоцитов П. с. с.

Функциональное значение


П. с. с. определяет частоту, последовательность и силу сокращений сердца. Пусковым механизмом сокращения миокарда является импульс возбуждения, возникающий в специализированных пейсмекерных (см. Пейсмекер) кардиомиоцитах I типа, входящих в состав синусно-предсердного узла. Этот импульс возникает в узле через равные промежутки времени от 60 до 80 раз в 1 мин. В норме синусно-предсердный узел является водителем сердечного ритма. Из узла импульс возбуждения распространяется со скоростью 0,8—1 м/сек по пучкам сердечных проводящих миоцитов к кардиомиоцитам сократительного миокарда предсердий и к атриовентрикулярному узлу. В проведении импульса по пучкам участвуют медленнопроводящие кардиомиоциты II типа. Из атриовентрикулярного узла импульс возбуждения со скоростью 1 — 1,5 м/сек проходит по быстропроводящим кардиомиоцитам III типа и пуркиньеподобным клеткам пучка Гиса и его ножек и затем со скоростью 3—5 м/сек— по их ветвям и проводящим волокнам Пуркинье к кардиомиоцитам сократительного миокарда желудочков сердца (см. также Сердце, физиология) .

Источник: xn--90aw5c.xn--c1avg


Проводящая система сердца разделяется на две взаимосвязанные части: синоатриальную (синусно-предсердную) и атриовентрикулярную (предсердно-желудочковую).

Строение проводящей системы сердца

Синусовый узел

Синусовый узел располагается у впадения полых вен в правое предсердие. Это место соответствует синусу лягушки и узел получил наименование синусного узла (узел Кис-Флака) (рис. 52).

Атриовентрикулярный узел

Точное изучение расположения мышечных волокон, проводящих возбуждение у мле­копитающих показало, что они рассыпаны по мышцам предсердий и образуют на их перегородке вблизи фиброзного кольца крупный узел (атриовентрикулярный узел или узел Тавара).

Пучок Гиса

От атриовентрикулярного узла в же­лудочки спускается толстый пучок этой же ткани (пучок Гиса). Он проходит через сухожильное кольцо и служит, таким образом, единственным местом соединения мышечных систем предсердий и желудочков.

Волокна Пуркинье

Затем пучок Гиса делится на две ножки —для пра­вого и левого желудочков, разветвляясь в мышце желудочков на множество тончайших волокон (волокна Пуркинье).

Физиология проводящей системы сердца

Первоначальное возбуждение

В синусном узле возникает первоначальное возбуждение. Оно проводится по всему сердцу, вызывая последовательное со­кращение его отделов.


Рефрактерная фаза

Следующее возбуждение, возникающее в узле, не вызывает сокращения сердца до тех пор, пока не окончится рефрактерная фаза.

Относительная рефрактерность

Но если нанести сердцу сильное раздражение во время относительной рефрактерности, то оно дает лишнее со­кращение — экстрасистолу, за которой следует удлиненная, так называемая компенсаторная пауза (рис. 53). Это происходит пото­му, что очередной импульс из синусного узла не может быть вос­принят желудочком, так как он в этот момент находится в рефракторной фазе после экстрасистолы, и он сможет воспринять лишь следующий импульс.

Распространение возбуждения

Из синусного узла возбуж­дение распространяется по пред­сердиям, доходит до узла Тавара, где оно немного задержива­ется, после чего спускается по пучку Гиса в желудочки. Там оно вызывает прежде всего со­кращение мышечных колец во­круг атриовентрикулярных от­верстий, а затем разбегается но желудочкам, сначала сокра­щая папиллярные мышцы, натя­гивающие сухожильные нити клапанов.

Нарушение проводящей системы сердца


При нарушении деятельнос­ти проводящей системы возбуж­дение может возникать не толь­ко в синусном узле, но и в узле Тавара или даже почти в любой точке проводящей систе­мы. Понятно, что импульсы, ис­ходящие из узла Тавара, дости­гают предсердий и желудочков почти одновременно, а это. конечно, может нарушить последо­вательность сокращений отделов сердца и, следовательно, нормаль­ный ток крови по организму. Подобные заболевания опасны для жизни.

Ритм работы сердца можно ускорить нагреванием синуса у ля­гушки или ловерова бугорка у млекопитающих. Учащение сердеч­ной деятельности при мышечной работе может произойти и от при­тока к синусному узлу более нагретой венозной крови, что было доказано в опытах с нагреванием полых вен.

Сердечная мышца обладает такими свойствами, как:

  • автоматия;
  • возбудимость;
  • проводимость;
  • сократимость;
  • рефрактерность.

Как видно из приведенных данных, частота сокращений серд­ца зависит от величины животного; чем мельче животное, тем чаще у пего бьется сердце. Это связано с тем. что у мелких живот­ных на единицу веса приходится большая поверхность тела. Поэ­тому у них больше теплоотдача и более интенсивный обмен веще­ств. В пределах одного вида сердце бьется чаще у молодых особей, чем у старых. Частота сокращений сердца зависит также от состоя­ния организма, температуры тела, мышечной работы, положения тела, периода пищеварения.

Работа клапанов сердца

Кровь всегда движется в одном направлении: из вен в предсердия, из предсердий в желудочки, из желудочков в аорту и легочную артерию. Движение крови в одном направлении обеспечивается системой клапанов сердца, пропускающих кровь только в одну сторону (рис. 49) Атриовентрикулярные (створча­тые) клапаны, находящиеся между желудочками и предсердиями, при систоле предсердий открыты и пропускают кровь в желудочки, в вены кровь из предсердия не возвращается, благодаря сокраще­нию кольцевой мускулатуры в устиях полых вен. Полулунные же клапаны, закрывающие вход в аорту и легочную артерию, закрыты. При сокращении желудочков кровь не может вернуться в пред­сердия, так как атриовентрикулярные клапаны закрываются, по­лулунные же клапаны открываются и пропускают кровь в артерии. Таким образом, благодаря своей ритмичной работе и наличию клапанов, сердце выполняет свою нагнетательную функцию. Но помимо нагнетательном функции сердце выполняет и присасываю­щую функцию. Присасывающая функция сердца обусловливается тем, что при систоле желудочков перегородка между предсердиями и желудочками отодвигается в сторону верхушки сердца, что вле­чет за собой растягивание предсердий. Следовательно, присасывание крови из вен в предсердия происходит за счет энергии сокращающихся желудочков. Этому помогает также отрицательное давление в грудной полости.

Атриовентрикулярные клапаны

Открывание и закрывание атриовентрикулярных клапанов происходит следующим обра­зом. При паузе сердца лопасти атриовентрикулярных клапанов сво­бодно свисают в полость желудочков. При сокращении предсердий кровь прижимает их к стенкам желудочков и она свободно отекает в желудочки. При сокращении желудочков давление крови в них повышается и давит на лопасти клапанов, которые прижимаются друг к другу и закрывают вход в предсердия. Итак, закрытие атриовентрикулярных клапанов происходит в основном пассивно.

Полному закрыванию отверстий между предсердиями и желудоч­ками способствуют и окружающие их мышечные кольца, от которых отходят мышечные волокна к лопастям клапанов. Сокращение этих мышечных колец происходит несколько раньше сокращения всей мышцы желудочков, это вызывает сужение отверстии, и кла­паны, очевидно, немного приподнимаются и сближаются еще до наступления полной систолы. Поэтому ни одной капли крови не возвращается в предсердия при систоле желудочков. Натяжение сухожильных нитей, которые тянутся от края лопастей клапана к капиллярным мышцам желудочков, препятствует выворачиванию клапанов в предсердия.

Полулунные клапаны

Полулунные клапаны представляют собой три кармашка, обра­щенные внутренними краями в сторону артериальных сосудов. При диастоле желудочков давление в этих сосудах прижимает края клапанов друг к другу. Когда же при систоле желудочков давление в желудочках становится больше, чем в артериях, клапаны откры­ваются.

Давление в сердце

Деятельность сердца сопровождается колебани­ями в нем давления. При систоле левого желудочка давление в нем повышается до 200 мм и даже выше, в правом — до 70 мм, а при сокращении предсердии давление в них повышается до 50 мм, а при их расслаблении падает до нуля.

Для получения ясного представления о деятельности сердца сопоставим кривые колебаний давления в левых предсердии и желудочке, моменты открытия и замыкания клапанов, изменения объема желудочка (рис. 50).

Систола предсердий

Систола пред­сердий вызывает небольшое повышение давления в них. При со­кращении предсердий заканчивается наполнение желудочков кровью, которая и до этого во время паузы стекала в них из пред­сердий. Желудочки максимально растягиваются.

Систола желудочков

Далее следует сокращение желудочков, при котором происходит резкое повышение в них давления, одновременно закрываются атриовентрикулярные клапаны. В этот начальный период систолы желудочка полость желудочка, пока давление в нем еще не открыло полулунных клапанов, оказывается замкнутой со всех сторон (фаза напряжения), и только тогда, когда в результате продолжающегося сокращения мышц давление в желудочке повысится настолько, что преодолеет сопротивление давления крови в артериях, откры­ваются полулунные клапаны. С этого момента начинается фаза из­гнания крови в артерии, которая продолжается в 4 раза дольше, чем фаза напряжения. В начале периода изгнания давление достигает максимальной величины, затем начинает снижаться, так как часть энергии затрачивается на изгнание крови. Объем желудочка резко уменьшается.

Диастола желудочков

Затем наступает диастола желудочка и предсердия, давление круто падает, полулунные клапаны закрываются и почти тотчас же открываются атриовентрикулярные клапаны, кровь стреми­тельно наполняет желудочки и растягивает их. Степень растяжения мышечных волокон сердечной мышцы влияет на силу сокращения. Чем больше крови притекает к сердцу по венам и чем сильнее вследствие этого растягиваются мышечные волокна, тем мощнее сокращается сердце и тем больше крови выбрасывается в аорту. Таким образом осуще­ствляется в известной степени как бы саморегуляция работы сердца.

Работа сердца, как это указывалось, всегда соот­ветствует потребностям ор­ганизма. Регуляция его работы осуществляется че­рез нервную систему и через гуморальные (т. е. через кровь) воздействия химическими веществами.

Нервная регуляция сердца

В сердце разветвляют­ся два нерва: симпатический и парасимпатический (блуждающий). И тот и другой не являются в полном смысле двигательными нерва­ми. Они не могут вызвать сокращения остановившегося сердца, но они оказывают влияние на силу и частоту его сокращений.

Раздражение обоих нервов сопровождается выделением из их окончаний особых химических веществ – медиаторов – норадреналина и ацетилхолина, при помощи которых происходит передача возбуждения с нерва на мышцу. Действие этих веществ на сердце во всех отношениях такое же, как и действие нервов, которые их выделяют. В последнее время появились исследования, из которых сле­дует, что медиаторы (ацетилхолин и норадреналин) являются необ­ходимыми в передаче трофических влияний блуждающего и симпа­тического нервов, но не обязательны для передачи функциональ­ных влияний. Материал с сайта http://wiki-med.com

Блуждающий и симпатический нерв влияют на сердце постоянно, так как центры этих нервов находятся в состоянии постоянного возбуждения — в тонусе. Их совместное действие и создает нормальную работу сердца. Если под влиянием каких-нибудь факторов тонус блуждающего нерва повысится, то это приведет к замедлению и ослаблению работы сердца, наоборот, повышение тонуса симпатического нерва усилит и ускорит работу сердца.

Симпатические нервы

Симпатические нервы берут начало в грудной части спинного мозга, проходят в пограничный ствол симпатического нерва и по­дают веточки к сердцу. Ветви симпатического нерва, подходящие слева, иннервируют левое сердце и узел Ашоффа-Тавары, а подходящие справа — правое сердце и синусный узел. Раздражение симпати­ческого нерка вызывает ускорение ритма, усиление систолы, повышение возбудимости и ускорение проведения возбуждений (рис. 55). Из симпатических нервов выделяет­ся симпатии, теперь отождествляющийся с одним из гормонов моз­гового вещества надпочечников — норадреналином.

И. П. Павлов считал, что усиливающее действие симпатичес­кого нерва является результатом его влияния на обмен веществ в сердце. Под влиянием этого нерва улучшается ассимиляция пита­тельных веществ и их использование мышцей сердца. Нервы, ока­зывающие действие на обмен веществ, были названы трофическими. Вопрос о трофическом влиянии нервной системы является одной из актуальных задач современной физиологии.

Существуют рефлексы, повышающие тонус симпатического центра и усиливающие работу сердца. К ним относятся раздражения кожи (массаж, растирание), а также раздражения мышечных рецепторов при работе.

Блуждающий нерв

Блуждающий (парасимпатический) нерв отходит из своего ядра в продолговатом мозге, спускается по шее (почти у всех животных в одном стволе с симпатическим), проходит в грудную полость, дает веточки в сердечную мышцу и разветвляется в синусном узле и узле Ашоффа-Тавары. Он действует на сердце противоположно симпатичес­кому. Раздражение блуждающего нерва замедляет ритм сердца, ослабляет его сокращения, повышает возбудимость и замедляет проведение возбуждения. Сильное раздражение этого нерва может вызвать остановку сердца (рис. 56).

Из окончаний блуждающего нерва выделяется вагальное вещество, оказавшееся ацетилхолином.

Известен ряд рефлексов, повышающих тонус блуждающего центра и вызывающих замедление работы сердца. Это происходит при давлении на глазное яблоко, раздражении ушных раковин, наложении закрутки на верхнюю губу у лошади. При ударе по кишкам сердце может даже остановиться, в этом легко убедиться, если ударить шпателем по обнаженному кишечнику у лягушки.

Кора головного мозга

На работу сердца влияет и кора головного мозга. Хорошо из­вестно, что тревога, радость, страх, гнев и т. д. влияют на работу сердца, в одних случаях усиливая ее, в других тормозя. На работу сердца можно даже выработать условные рефлексы. Если каком-нибудь посторонний раздражитель, например, звук совпа­дет несколько раз с каким-нибудь фактором, усиливающим работу сердца, скажем, с мышечной работой, то затем один только звук вызовет усиление сердечной деятельности.

Источник: wiki-med.com

комплекс анатомических образований сердца (узлов, пучков и волокон), состоящих из атипичных мышечных волокон (сердечные проводящие мышечные волокна) и обеспечивающих координированную работу разных отделов сердца (предсердий и желудочков), направленную на обеспечение нормальной сердечной деятельности.

Координируя сокращений предсердий и желудочков, ПСС обеспечивает ритмичную работу сердца, т.е нормальную сердечную деятельность. В частности, ПСС именно обеспечивает автоматизм сердца.

o Синусно-предсердный узел (узел Киса-Флека) находится в стенке правого предсердия. Является главным, ведущим. Задает ритм, создавая импульсы.

o Предсердно-желудочковый узел (атриовентрикулярный; Ашофф-Тавара) находится в межпредсердной перегородке, ближе к желудочкам.

  • Пучок Гиса (предсердно-желудочковый пучок) отходит от предсердно-желудочкового узла и продолжается в межжелудочковую перегородку, где делится на 2 ножки (правую и левую), идущие к желудочкам.

Эти ножки называются волокнами Пуркинье и располагаются в стенках желудочков.

Проводящая система сердца физиология

1 – синусно-предсердный узел 2 – предсердно – желудочковый узел

3 – пучок Гиса 4 – волокна Пуркинье

v Как происходит проводящая система сердца?

Возбуждающий импульс возникает в синусовом узле. из синусового узла достигает миокарда предсердий.

Ø По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):

· Передний путь (тракт Бахмана) — идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки — одна из которых подходит к АВУ, а другая — к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;

· Средний путь (тракт Венкебаха) — идет по межпредсердной перегородке к АВУ;

· Задний путь (тракт Тореля) — идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.

Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.

Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.

АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков.

Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.

Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма — 15-30 импульсов в минуту.

В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.

В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

Источник: studopedia.ru

ПРОВОДНИКОВАЯ СИСТЕМА

provodashaja-sistema

1. Синусовый узел (синоатриальный, S—A-узел Keith и Flack)

2. Передний межузловой путь с двумя разветвлениями:

2а — пучок к левому предсердию (пучок Bachmann)

2б — нисходящий пучок к межпредсердной перегородке и атриовентрикулярному узлу

3. Средний межузловой путь

4. Задний межузловой путь

5. Атриовентрикулярный (А—V) узел Ашоффа—Тавара

6. Пучок Гиса

7. Правая ножка пучка Гиса

8. Левая ножка пучка Гиса

9. Задняя ветвь левой ножки

10. Передняя ветвь левой ножки

11. Сеть волокон Пуркинье в желудочковой мускулатуре

12. Сеть волокон Пуркинье в предсердной мускулатуре

СИНУСОВЫЙ УЗЕЛ

Синусовый узел представляет собой пучок специфической сердечно-мышечной ткани, длина которого достигает 10—20 мм и ширина — 3—5 мм. Он расположен субэпикардиально в стенке правого предсердия, непосредственно сбоку от устья верхней полой вены. Клетки синусового узла расположены в нежной сети, состоящей из коллагеновой и эластической соединительной ткани. Существует два вида клеток синусового узла — водителя ритма или пейсмекерные (Р-клетки) и проводниковые (Т-клетки). Р-клетки генерируют электрические импульсы возбуждения, а Т-клетки выполняют преимущественно функцию проводников. Клетки Р связываются как между собой, так и с клетками Т. Последние, в свою очередь, анастомозируют друг с другом и связываются с клетками Пуркинье, расположенными около синусового узла.

В самом синусовом узле и рядом с ним находится множество нервных волокон симпатического и блуждающего нервов, а в субэпикардиальной жировой клетчатке над синусовым узлом расположены ганглии блуждающего нерва. Волокна к ним исходят в основном из правого блуждающего нерва.
Питание синусового узла осуществляется синоатриальной артерией. Это сравнительно крупный сосуд, который проходит через центр синусового узла и от него отходят мелкие ветви к ткани узла. В 60% случаев синоатриальная артерия отходит от правой венечной артерии, а в 40% — от левой.

Синусовый узел является нормальным электрическим водителем сердечного ритма. Через равные промежутки времени в нем возникают электрические потенциалы, возбуждающие миокард и вызывающие сокращение всего сердца. Клетки Р синусового узла генерируют электрические импульсы, которые проводятся клетками Т в близкорасположенные клетки Пуркинье. Последние, в свою очередь, активируют рабочий миокард правого предсердия. Кроме того, по специфическим путям электрический импульс проводится в левое предсердие и атриовентрикулярный узел.

МЕЖУЗЛОВЫЕ ПУТИ

межузловые путиЭлектрофизиологическими и анатомическими исследованиями в последнее десятилетие было доказано наличие трех специализированных проводниковых путей в предсердиях, связывающих синусовый с атриовентрикулярным узлом: передний, средний и задний межузловые пути (James, Takayasu, Merideth и Titus). Эти пути образованы клетками Пуркинье и клетками, очень похожими на клетки сократительного предсердного миокарда, нервными клетками и ганглиями блуждающего нерва (James).

Передний межузловой путь делится на две ветви — первая из них идет к левому предсердию и называется пучком Бахманна, а вторая спускается вниз и кпереди по межпредсердной перегородке и достигает верхней части атриовентрикулярного узла.

Средний межузловой путь, известный под названием пучок Венкебаха, начинается от синусового узла, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и, анастомозируя с волокнами переднего межузлового пути, достигает атриовентрикулярного узла.

Задний межузловой путь, названный пучком Тореля, отходит от синусового узла, идет вниз и кзади, проходит непосредственно над коронарным синусом и достигает задней части атриовентрикулярного узла. Пучок Тореля самый длинный из всех трех межузловых путей.

Все три межузловые пути анастомозируют между собой недалеко от верхней части атриовентрикулярного узла и связываются с ним. В некоторых случаях от анастомоза межузловых путей отходят волокна, которые обходят атриовентрикулярный узел и сразу достигают его нижней части, или же доходят до того места, где он переходит в начальную часть пучка Гиса.

АТРИОВЕНТРИКУЛЯРНЫЙ УЗЕЛ

Атриовентрикулярный узел находится справа от межпредсердной перегородки над местом прикрепления створки трехстворчатого клапана, непосредственно рядом с устьем коронарного синуса. Форма и размеры его разные: в среднем длина его достигает 5-6 мм, а ширина — 2-3 мм.

Подобно синусовому узлу, атриовентрикулярный узел содержит также два вида клеток — Р и Т. Однако имеются значительные анатомические различия между синоаурикулярным и атриовентрикулярным узлами. В атриовентрикулярном узле гораздо меньше Р-клеток и незначительное количество сети коллагеновой соединительной ткани. У него нет постоянной, центрально проходящей артерии. В жировой клетчатке за атриовентрикулярным узлом, вблизи устья коронарного синуса, находится большое число волокон и ганглиев блуждающего нерва. Кровоснабжение атриовентрикулярного узла происходит посредством ramus septi fibrosi, называемой еще артерией атриовентрикулярного узла. В 90% случаев она отходит от правой венечной артерии, а в 10% — от ramus circumflexus левой венечной артерии.

Клетки атриовентрикулярного узла связываются анастомозами и образуют сетчатую структуру. В нижней части узла, перед переходом в пучок Гиса, клетки его располагаются параллельно друг другу.

ПУЧОК ГИСА

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом. Эта часть известна под названием начальной проксимальной или пенетрирующей части пучка Гиса. Затем пучок Гиса переходит в задне-нижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Это так называемая мембранозная часть пучка Гиса. Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см. Питание пучка Гиса осуществляется артерией атриовентрикулярного узла.

Иногда от дистальной части пучка Гиса и начальной части левой ножки его отходят короткие волокна, идущие в мышечную часть межжелудочковой перегородки. Эти волокна называются параспецифическими фибрами Махайма.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

ПРАВАЯ И ЛЕВАЯ НОЖКИ ПУЧКА ГИСА

Пучок Гиса в нижней части, названной бифуркацией, разделяется на две ножки — правую и левую, которые идут субэндокардиально или интракардиально по соответствующей стороне межжелудочковой перегородки. Правая ножка представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные проксимальные разветвления или без таковых. В дистальной части правая ножка пучка Гиса выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается анастомозами с волокнами сети Пуркинье.

Несмотря на усиленные морфологические изучения, проводимые в последние годы, структура левой ножки пучка Гиса остается невыясненной. Существуют две основные схемы строения левой ножки пучка Гиса. Согласно первой схеме (Rosenbaum и сотр.), левая ножка еще с самого начала делится на две ветви — переднюю и заднюю. Передняя ветвь — относительно более длинная и тонкая — достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка. Задняя ветвь — относительно короткая и толстая — достигает основания задней сосочковой мышцы левого желудочка. Таким образом внутрижелудочковая проводниковая система представлена тремя проводящими путями, названными Rosenbaum и сотр. фасцикулами, — правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса. Множество электрофизиологических исследований поддерживают мнение о трехпучковой (трифасцикулярной) внутрижелудочковой проводниковой системе.

По второй схеме (James и сотр.) считается, что в отличие от правой ножки, левая не представляет собой обособленного пучка. Левая ножка еще в самом начале, отходя от пучка Гиса, разделяется на множество варьирующих по числу и толщине волокон, которые веерообразно разветвляются субэндокардиально по левой стороне межжелудочковой перегородки. Два из множества разветвлений образуют более обособленные пучки — один, расположенный спереди, — в направлении передней, а другой сзади — в направлении задней сосочковой мышцы.

Как левая, так и правая ножка пучка Гиса, подобно межузловым путям предсердий, составлены из двух видов клеток — клеток Пуркинье и клеток, очень похожих на клетки сократительного миокарда.
Большая часть правой и передние две трети левой ножки кровоснабжаются септальными веточками левой передней нисходящей артерии. Задняя треть левой ножки питается септальными веточками задней нисходящей артерии. Существует множество транссептальных анастомозов между септальными веточками передней нисходящей венечной артерии и веточками задней нисходящей венечной артерии (James).
Волокна блуждающего нерва доходят до обеих ножек пучка Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

ВОЛОКНА СЕТИ ПУРКИНЬЕ

Конечные разветвления правой и левой ножек пучка Гиса связываются анастомозами с обширной сетью клеток Пуркинье, расположенных субэндокардиально в обоих желудочках. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков. Электрический импульс, поступающий по внутрижелудочковым проводящим путям, достигает клеток сети Пуркинье и отсюда переходит непосредственно к сократительным клеткам желудочков, вызывая сокращение миокарда.

Нервные волокна блуждающего нерва не доходят до сети волокон Пуркинье в желудочках.
Клетки сети волокон Пуркинье питаются кровью из капиллярной сети артерий соответствующего района миокарда.

Источник: e-cardio.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.