Проводящая система сердца схема


Проводящая система сердца

Сердце как орган, работающий в системе постоянного автоматизма, включает в себя проводящую систему сердца, systema conducens cordis, координирующую, корригирующую и обеспечивающую его автоматизм с учетом сокращения мускулатуры отдельных камер.

Проводящая система сердца состоит из узлов и проводящих путей (пучков). Эти пучки и узлы, сопровождаемые нервами и их разветвлениями, служат для передачи импульсов с одного отдела сердца на другие, обеспечивая последовательность сокращений миокарда отдельных камер сердца.
Проводящая система сердца схема
У места впадения верхней полой вены в правое предсердие, между веной и правым ушком, располагается синусно-предсердный узел, nodus sinuatrialis. Волокна от этого узла идут вдоль пограничного гребня, т. е. по границе, разделяющей правое ушко и синус полых вен, и окружают проходящий здесь артериальный стволик, направляясь к миокарду предсердий и к предсердно-желудочковому узлу.


Мускулатура предсердий в основном изолирована от мускулатуры желудочков. Исключение составляет пучок волокон, начинающийся в межпредсердной перегородке в области венечного синуса сердца. Этот пучок состоит из волокон с большим количеством саркоплазмы и небольшим количеством миофибрилл. В состав пучка входят и нервные волокна, они направляются к межжелудочковой перегородке, проникая в ее толщу.

В пучке различают утолщенную начальную часть — предсердно-желудочковый узел, nodus atrioventricularis, переходящий в более тонкий предсердно-желудочковый пучок, fasciculus atrioventricularis . Начальная часть пучка — ствол, truncus, направляется к межжелудочковой перегородке, проходит между обоими фиброзными кольцами и у верхнезаднего отдела мышечной части перегородки делится на правую и левую ножки.

Правая ножка, crux dextrum, короткая и более тонкая, следует по перегородке со стороны полости правого желудочка к основанию передней сосочковой мышцы и в виде сети тонких волокон распространяется в мышечном слое желудочка.

Левая ножка, crus sinistrum, шире и длиннее правой, располагается по левой стороне межжелудочковой перегородки, в своих начальных отделах залегает более поверхностно, ближе к эндокарду. Направляясь к основанию сосочковых мышц, она рассыпается на тонкую сеть волокон, образующих переднюю и заднюю ветви, распространяющиеся в миокарде левого желудочка.


Проводящая система сердца схема
Внутренняя оболочка сердца, или эндокард. Эндокард, endocardium, образована из эластических волокон, среди которых располагаются соединительнотканные и гладкомышечные клетки. Со стороны полости сердца эндокард покрыт эндотелием.

Эндокард выстилает все камеры сердца, плотно сращен с подлежащим мышечным слоем, следует за всеми его неровностями, образуемыми мясистыми трабекулами, гребенчатыми и сосочковыми мышцами, а также их сухожильными выростами.

На внутреннюю оболочку отходящих от сердца и впадающих в него сосудов — полых и легочных вен, аорты и легочного ствола — эндокард переходит без резких границ. В предсердиях эндокард толще, чем в желудочках, особенно в левом предсердии, и тоньше там, где покрывает сосочковые мышцы с сухожильными хордами и мясистые трабекулы.

В наиболее истонченных участках стенок предсердий, где в их мышечном слое образуются промежутки, эндокард близко соприкасается и даже срастается с эпикардом. В области фиброзных колец предсердно-желудочковых отверстий, а также отверстий аорты и легочного ствола эндокард путем удвоения своего листка — дупликатуры эндокарда — образует створки предсердно-желудочковых клапанов и полулунные клапаны легочного ствола и аорти. Волокнистая соединительная ткань между обоими листками каждой из створок и полулунных заслонок соединена с фиброзными кольцами и таким образом фиксирует к ним клапаны.


Проводящая система сердца Сердце вскрыто продольным разрезом, проведенным во фронтальной плоскости.

правая легочная вена;
устья правых легочных вен;
левое предсердие;
левые легочные вены;
межпредсердная перегородка;
кровеносные сосуды сердца (в венечной борозде);
створки левого предсердно-желудочкового клапана;
сухожильные хорды;
межжелудочковая перегородка;
сосочковые мышцы;
левая ножка предсердно-желудочкового пучка;
левый желудочек;
правый желудочек;
правая ножка предсердно-желудочкового пучка;
сосочковые мышцы;
сухожильные хорды;
створки правого предсердно-желудочкового клапана;
предсердно-желудочковый пучок (пучок Гиса);
устье венечного синуса;
заслонка венечного синуса;
нижняя полая вена;
предсердно-желудочковый узел (узел Тавара);
овальная ямка;
правое предсердие;
синусно-предсердный узел (узел Кис-Флака);
верхняя полая вена.

Атлас анатомии человека. Академик.ру. 2011.

Источник: anatomy_atlas.academic.ru

Синусовый узел

Синусовый узел (синузел синоатриальный, синоаурикулярный, Кисса—Флека) представлен небольшими атипичными (несократительными) кардиомиоцитами, входящими в проводящую систему сердца.


язь синусового узла с атриовентрикулярным узлом обеспечивается тремя трактами: передним (пучок Бахмана), средним (пучок Венкебаха) и задним (пучок Тореля). Обычно импульсы достигают атриовентрикулярного узла по переднему и среднему трактам. Следуя по ним, импульсы равномерно охватывают возбуждением прилегающие к проводящим путям отделы миокарда. Пейс-мекерные клетки синусового узла не имеют быстрых Na+-каналов, поэтому развивают лишь низкую скорость нарастания потенциала действия, величина которой зависит от внутриклеточного притока Са++. Вместе с тем, клетки синусового узла обладают относительно быстрой спонтанной деполяризацией (фаза 4), что обеспечивает их способность автоматически генерировать до 100 импульсов и более в минуту.

Синусовый узел богато иннервирован симпатическими и парасимпатическими нервами, которые позволяют центральной нервной системе (ЦНС) оказывать на него существенное регулирующее влияние в интересах организма.

Симпатическая стимуляция вызывает в пейсмекерных клетках повышение скорости продолжительного тока кальция. Это изменение связано с увеличением активности цАМФ и протеинкиназы А, которое обусловливает фосфорилирование Ca++-L каналов. Симпатическая стимуляция увеличивает также ток калия из клетки, что укорачивает продолжительность потенциала действия и способствует преждевременному старту следующего потенциала действия.


Наконец, симпатическая стимуляция увеличивает вход Na+ в клетку, что приводит к повышению скорости спонтанной диастолической деполяризации. Активация парасимпатической нервной системы вызывает противоположный эффект. Увеличение ацетилхолина активирует G-белок, который ингибирует аденилатциклазу и приводит к снижению концентрации цАМФ, что уменьшает скорость ионных потоков кальция в клетку, калия из клетки и натрия в клетку.

Предсердно-желудочковый компонент объединяет расположенный в нижней стенке правого предсердия атриовентрикулярный узел и отходящий от него пучок Гиса, который имеет 2 ножки — правую и левую. Этот пучок связывает между собой желудочки. Отходящие от пучка Гиса ветви обозначают как волокна Пуркинье.

В атриовентрикулярном АВ-соединении, главным образом в его пограничных участках между атриовентрикулярным узлом и пучком 1иса, происходит достаточно существенное замедление скорости проведения импульсов. Эта замедление обеспечивает отсроченное возбуждение желудочков после окончания полноценного сокращения предсердий. В целом основными функциями атриовентрикулярного узла являются:

а) антеградная задержка и «фильтрация» волн возбуждения от предсердий к желудочкам, обеспечивающая скоординированное сокращение предсердий и желудочков;
б) функциональная защита желудочков от возбуждения в «уязвимой» фазе потенциала действия: минимизация вероятности электрической обратной связи между желудочками и предсердиями.

Кроме того, в условиях угнетения активности синоатриального узла атриовентрикулярный узел способен выполнять роль самостоятельного генератора сердечного ритма, т.е. выступать в качестве пейсмекера второго порядка, индуцируя в среднем 40—60 импульсов в минуту.

Доминирующим в роли пейсмекера при прочих равных условиях является синусовый узел – водитель ритма первого порядка, т.к. в норме по сравнению с АВ-узлом генерирует импульсы с большей частотой.

Атриовентрикулярный узел


Атриовентрикулярный (АВ) узел (син.: АВ узел Ашоффа—Тавары; АВ-соединение). Предсердия изолированы от желудочков фиброзным кольцом, которое неспособно пропускать сигналы от синусового узла. В норме есть только один электрически активный путь между предсердиями и желудочками — это атриовентрикулярный узел, нередко называемый АВ-соединением В предсердной части АВ-узла находятся т. н. «переходные» клетки-пейсмекеры, аналогичные клеткам водителя ритма первого порядка. Скорость (крутизна) спонтанной диастолической деполяризации в этих клетках очень низкая, составляя всего 0,05 м/с (для сравнения скорость проведения сигналов в предсердии 1,0 м/с), поэтому пороговый потенциал возбуждения достигается медленнее, что можно объяснить, во-первых, исключительно продолжительным током кальция в клетки-пейсмекеры, а во-вторых, — их низкой плотностью в АВ-соединении.

Пучок Гиса (син.: АВ-пучок Гиса) и волокна Пуркинье (син.: система Шса-Пуркинье). Пучок Гкса — это совокупность волокон, которые заключены в фиброзные оболочки и отходят от АВ-узла, постепенно расслаиваясь на две группы волокон—левую ножку пучка, которая иннервирует межжелудочковую перегородку, левый желудочек, и правый пучок, иннервирующий правый желудочек. Дистальные ветви этих пучков проникают во все регионы правого и левого желудочков, образуя систему Пуркинье.


Потенциалы действия пучка Шса и волокон Пуркинье схожи между собой. Для них характерны быстрая фаза 0 деполяризации, длительный период плато, и очень медленная диастолическая деполяризация. Быстрая фаза 0 деполяризации обусловлена чрезвычайно высокой плотностью быстрых Na+-каналов. Длительный период плато (фаза 2), как полагают, возникает либо из-за сравнительно поздней инактивации Са2+-каналов или поздней активации К+-каналов. Фаза 4 деполяризации замедлена из-за медленного потока ионов Na+ внутрь клетки (If). Достаточно быстрое проведение сигналов в системе Пуркинье необходимо для практически одновременной активации желудочков. Этому способствует также высокая плотность синаптических контактов клеток Пуркинье на кардиомиоцитах (рис. 6.9).

Проводящая система обладает рядом свойств, определяющих ее участие в работе сердца: автоматизм, возбудимость и проводимость. Основным из них является автоматизм, без которого остальные свойства бессмысленны.

Автоматизм клеток миокарда

Автоматизм — это способность специализированных клеток миокарда спонтанно вырабатывать электрические импульсы (син: потенциалы действия; ПД). Существует продольный (от предсердий к верхушке сердца) градиент автомата и проводящей системы. Принято различать три «центра» автоматизма:


1. синоатриальный узел — водитель ритма сердца первого порядка. В физиологических условиях этот узел генерирует импульсы с частотой 60-1 80 в мин;

2. атриовентрикулярный узел (клетки АВ-соединения) – водитель ритма сердца второго порядка, который способен генерировать 40—50 импульсов в 1 мин;

3. пучок Гиса (30—40 импульсов в 1 мин) и волокна Пуркинье (в среднем  20 импульсов в 1 мин) — водители ритма третьего порядка.

В норме единственным водителем ритма является синоатриальный узел, 1 который «не позволяет» реализоваться автоматической активности других потенциальных водителей ритма.

В основе автоматизма лежит медленная диастолическая деполяризация, постепенно понижающая мембранный потенциал до уровня порогового (критического) потенциала, с которого начинается быстрая регенеративная деполяризация мембраны, или фаза 0 потенциала действия.

Ритмичное возбуждение пейсмекерных клеток с частотой 70—80 в 1 мин можно объяснить двумя процессами: 1) ритмичным спонтанным повышением проницаемости мембран этих клеток для ионов Na+ и Са++, вследствие чего они поступают в клетку; 2) ритмичным снижением проницаемости для J ионов К+, в результате чего количество покидающих клетку ионов К+ уменьшается.

Согласно предложенному недавно альтернативному механизму, входящий пейсмекерный ток ионов Na+ (If) со временем возрастает, тогда как выходящий ток К+ остается неизменным.


целом данные процессы детерминируют развитие мед ленной диастолической деполяризации клеток пейс-мекера и достижение критического порога возбуждения (—40 мВ), обеспечивающего возникновение потенциала действия и его распространение по миокарду. Восходящая часть ПД клеток-пейсмекеров обеспечивается входом Са2+ в клетку Отсутствие плато можно объяснить характерным изменением проницаемости мембраны для ионов, при котором процессы деполяризации и инверсии плавно переходят в реполяризацию, которая также проходит более медленно из-за замедленного тока К+ из клетки. Амплитуда ПД составляет 70—80 мВ, его продолжительность — около 200 мс, рефрактерность — около 300 мс, те. длительность рефрактерного периода продолжительнее ПД, что защищает сердце от внеочередных импульсов (и соответственно преждевременного возбуждения), исходящих из других (как нормальных, так , и патологических) генераторов возбуждения, приходящихся на период не-возбудимости сердечной мышцы.

Функционирование дистальной (эффекторной) часта проводящей системы обеспечивают такие же процессы, которые происходят в клетках сино-атриального пейсмекера. В развитии спонтанной диастолической депаляризации в структурах системы Гиса—Пуркинье важную роль играет также ток ионов Na+ (И). Кроме того, в этом процессе участвуют и другие ионные токи, включая ток ионов К+ (ik), который в значительной степени определяет зависимость автоматизма волокон Пуркинье от внеклеточной концентрации ионов К+. При этом, отметим ток ионов К+ весьма незначителен в пейсмекерных клетках синоатриального узла, поскольку в них мало калиевых каналов.


В современной модели автоматизма волокон Пуркинье представлены четыре ионных механизма, зависящие от внеклеточной концентрации ионов К+:

1) активация тока ионов Na+ (If), усиливающая пейсмекерную активность;

2) активация тока ионов К+ (Ik), замедляющая или приостанавливающая пейсмекерную активность;

3) активация Na+/K+-Hacoca (Ip), замедляющая пейсмекерную активность;

4) уменьшение тока ионов K+(Ik), усиливающая пейсмекерную активность.

С электрофизиологической точки зрения, интервал между сокращениями сердца равен отрезку времени, в течение которого мембранный потенциал покоя в клетках-пейсмекерах синоатриального узла смещается до уровня порогового потенциала возбуждения

Существует строгая согласованность между процессом электрической активации каждого кардиомиоцита [потенциалом действия], возбуждением всего миокардиального синцития [ЭКГ-комплексом] и сердечным циклом [биомеханограммой] сердца.

Источник: cardio-bolezni.ru

Анатомия

В П. с. с. выделяют две взаимосвязанные части: синусно-предсердную и атриовентрикулярную (предсердно-желудочковую). К синусно-предсердной части относят синусно-предсердный узел (nodus sinuatrialis) с отходящими от него пучками сердечных проводящих миоцитов. Атриовентрикулярная часть представлена атриовентрикулярным узлом (nodus atrioventricularis), пучком Гиса, или атриовентрикулярным пучком (предсердно-желудочковый пучок, Т.; fasc. atrioventricularis) с его левой и правой ножками и периферическими разветвлениями — проводящими волокнами Пуркинье (myofibrae conducentes purkinjienses). На рис. 1 представлена схема проводящей системы сердца.

Эмбриология

Формирование основных элементов П. с. с. у эмбриона начинается на стадии трубчатого сердца, в, к-ром,, по данным Венинка (А. С. G. Wenink, 1976), кроме будущего сократительного миокарда, имеются еще четыре морфологически специализированных мышечных кольца: бульбовентрикулярное, атриовентрикулярное, синоатриальное и трункобульбарное. Из этих колец в процессе петлеобразования и формирования камер сердца развиваются все компоненты П. с. с. Бульбовентрикулярное кольцо участвует в образовании атриовентрикулярного пучка и его ножек, атриовентрикулярное — в формировании атриовентрикулярного узла и пучка, синоатриальное кольцо дает начало синусно-предсердному и атриовентрикулярному узлам. Из трункобульбарного кольца формируются структуры, функционирующие только в сердце эмбрионов.

Распространенная ранее теория Молла (F. P. Mall, 1912), согласно к-рой П. с. с. представляет остаток аурикулярного канала, в настоящее время признана несостоятельной.

Синусно-предсердный узел (nodus sinuatrialis), описанный в 1906 г. Кисом и Флеком (A. Keith, М. Flack), является генератором импульсов возбуждения сердечных сокращений (см. Автоматия). Он расположен на верхней поверхности правого предсердия между устьем верхней полой вены и ушком правого предсердия. Узел всегда выявляется макроскопически. Длина его 8—26 мм, ширина 4—13 мм, толщина 1—3 мм. Связанные с узлом пучки сердечных проводящих миоцитов проводят возбуждение к миокарду различных отделов предсердий и атриовентрикулярному узлу. Выделяют пучки, направленные к верхней и нижней полым венам, задний межвенозный пучок, описанный в 1906—1907 гг. Венкебахом (К. F. Wenckebach), передний и задний межузловые пучки,, последний был описан в 1909 г. Торелем (Ch. Thorel). Пучок, проводящий возбуждение от узла к левому предсердию и устьям легочных вен, описал в 1913 г. Ю. Тандлер, а пучок, направленный к ушку левого предсердия, обнаружил в 1916 г. Бахманн (J. G. Bachmann). Размеры и положение пучков индивидуально изменчивы, они не всегда выявляются макроскопически, хотя всегда могут быть обнаружены с помощью гистологических методов исследования (см.).

Атриовентрикулярный узел (nodus atrioventricularis) был описан в 1906 г. Таварой (S. Tawara) и Л. Ашоффом. Он располагается в правом фиброзном треугольнике у передневерхней части устья синуса полых вен ниже прикрепления перегородочной створки трехстворчатого клапана. Атриовентрикулярный узел, так же как пучок Гиса и его ножки, всегда выявляется макроскопически (рис. 2). Форма узла чаще округлая. Длина его 3—15 мм, ширина 1—7 мм, толщина 0,5—2 мм. От узла отходит пучок Гиса, который проникает через правый фиброзный треугольник в перепончатую часть межжелудочковой перегородки, разделяясь у верхнего края ее мышечной части на левую и правую ножки. Часть пучка на протяжении от узла до начала деления на ножки называют стволом (truncus), длина его 3—20 мм. Положение пучка в межжелудочковой перегородке индивидуально изменчиво. Левая ножка (crus sinistrum) пучка Гиса длиной 5—27 мм и шириной у места отхождения от ствола 1,5—15 мм располагается под эндокардом на левой поверхности межжелудочковой перегородки и разделяется на одном уровне на 2—4 ветви (rr. cruris), которые переходят в проводящие мышечные волокна Пуркинье. Правая ножка (crus dextrum) располагается под эндокардом на правой поверхности межжелудочковой перегородки в виде одного, значительно более тонкого, чем левая ножка, ствола, от к-рого на всем протяжении отходят ветви к миокарду правого желудочка.

Описаны также добавочные проводящие тракты — пучки Кента, Джеймса, волокна Махейма, которые макроскопически не выявляются.

Кровоснабжение

Синусно-предсердный узел получает артериальную кровь из ветви синусно-предсердного узла (r. nodi sinuatrialis), отходящей чаще от правой коронарной (венечной, Т.) артерии, реже от огибающей ветви (r. circumflexus) левой коронарной артерии. Капиллярная сеть, образованная артериолами, отходящими от ветви синусно-предсердного узла, ориентирована по ходу волокон. Посткапиллярные венулы, образующие густую сеть, формируют 1—3 вены диаметром до 0,5 мм, впадающие в вены стенки верхней полой вены, в вены ушка правого предсердия. Пучки сердечных проводящих миоцитов, связанные с синусно-предсердным узлом, васкуляризируются от близлежащих ветвей коронарных артерий. Кровь в атриовентрикулярный узел поступает из ветви атриовентрикулярного узла (r. nodi atrioventricularis), отходящей чаще от правой коронарной артерии и очень редко от огибающей ветви (r. circumflexus) левой коронарной артерии. Отток венозной крови из узла происходит по посткапиллярам и венулам в дренирующие вены, идущие к венечному синусу сердца (sinus coronarius) и к средней вене сердца (v. cordis media). К стволу атриовентрикулярного пучка и его ножкам подходят мелкие артерии и артериолы, идущие от артерии, снабжающей кровью атриовентрикулярный узел, а также от первой перегородочной межжелудочковой ветви (r. mterventricularis septalis I) и передней межжелудочковой ветви (r. interventricularis anterior) левой коронарной артерии. Плотность артериол в атриовентрикулярном узле в 10 раз меньше, чем в пучке. Венозный отток из узла и пучка осуществляется по мелким венам к большой вене сердца (v. cordis magna). Артериолы и венулы в атриовентрикулярном пучке расположены параллельно сердечным проводящим миоцитам. По данным Ван-дер-Хауарта, Струбандта, Верхаге (L. G. Van der Hauwaert, R. Stroobandt, L. Verhaeghe, 1972), анастомозы между сосудистыми образованиями П. с. с. и сосудами межжелудочковой перегородки отсутствуют.

Лимфоотток

Лимф. сосуды и капилляры в атриовентрикулярном узле обнаружил в 1909 г. Карран (E. J. Curran), а в 1976 г. Элиш ка и Элишкова (О. Eliska, М. Eliskova) нашли их в синусно-предсердном узле. По лимф. сосудам лимфа оттекает из П. с. с. к трахеобронхиальным или средостенным лимф. узлам.

Иннервация

П. с. с. иннервируется многочисленными симпатическими, парасимпатическими и чувствительными нервными волокнами интракардиального нервного сплетения (см. Внутрисердечная нервная система; Сердце, анатомия).

Гистология

В состав образований П. с. с., помимо специализированных кардиомиоцитов, входят нервные элементы (нервные стволы различной толщины, состоящие из миелиновых и безмиелиновых нервных волокон, нервные окончания), соединительная ткань с сосудами. В отличие от сократительного миокарда для П. с. с. характерно количественное преобладание соединительнотканных и нервных элементов над мышечными и сосудистыми. По данным Труэкса (R. Truex) с соавт. (1974), кардиомиоциты П. с. с. при общепринятых гистол. окрасках выглядят светлее, чем клетки сократительного миокарда и отличаются от них по размерам. С помощью электронно-микроскопических исследований установлено, что в этих клетках хорошо развиты комплекс Гольджи (см. Гольджи комплекс), локализующийся около ядра или субсарколеммально, зернистая и незернистая эндоплазматическая сеть (см. Эндоплазматический ретикулум), рибосомы (см.); имеются мелкие округлые митохондрии (см.), небольшое количество лизосом (см.), содержатся гранулы гликогена. Характерной особенностью специализированных кардиомиоцитов является наличие туннелевидных инвагинаций сарколеммы, содержащих соединительнотканные и нервные элементы, выраженных субсарколеммальных цистерн, комплекса миофиламентов с полирибосомами. В зависимости от размера, формы клеток, количества и положения миофибрилл выделяют четыре типа специализированных кардиомиоцитов. Клетки I, II, III типов обнаружены в составе П. с. с. практически у всех млекопитающих, в т. ч. и у человека. Они имеют меньший размер, чем клетки сократительного миокарда. К клеткам I типа относят кардиомиоциты веретеновидной формы, которые по сравнению с кардиомиоцитами сократительного миокарда содержат меньшее количество неправильно ориентированных миофибрилл. Кардиомиоциты II типа имеют неправильную отростчатую форму, содержат примерно такое же количество миофибрилл, как и клетки сократительного миокарда, но в отличие от последнего миофибриллы в кардиомиоцитах II типа расположены беспорядочно.

К кардиомиоцитам III типа относят клетки веретеновидной формы с малым количеством упорядоченно расположенных вдоль длинной оси клетки миофибрилл и большим количеством гранул гликогена. Клетки IV типа (клетки Пуркинье) встречаются лишь у некоторых видов животных. У большинства млекопитающих и человека имеются клетки, подобные клеткам Пуркинье, которые сходны с клетками Пуркинье по функциональным показателям.

Разные части П. с. с. содержат различные типы специализированных кардиомиоцитов. Синусно-предсердный узел состоит из клеток I и II типов, атриовентрикулярный узел — из клеток II и III типов, пучок Гиса содержит клетки всех типов, ножки этого пучка и его концевые разветвления состоят из клеток III типа и клеток, подобных клеткам Пуркинье, или только из последних.

Различают несколько видов контактов между кардиомиоцитами П. с. с. С помощью вставочных дисков и нексусов контактируют между собой гл. обр. клетки II типа, а также клетки III типа. Между клетками I типа эти контакты редки, для них характерны простые контакты. Простые контакты встречаются также и между всеми другими типами кардиомиоцитов П. с. с.

Функциональное значение

П. с. с. определяет частоту, последовательность и силу сокращений сердца. Пусковым механизмом сокращения миокарда является импульс возбуждения, возникающий в специализированных пейсмекерных (см. Пейсмекер) кардиомиоцитах I типа, входящих в состав синусно-предсердного узла. Этот импульс возникает в узле через равные промежутки времени от 60 до 80 раз в 1 мин. В норме синусно-предсердный узел является водителем сердечного ритма. Из узла импульс возбуждения распространяется со скоростью 0,8—1 м/сек по пучкам сердечных проводящих миоцитов к кардиомиоцитам сократительного миокарда предсердий и к атриовентрикулярному узлу. В проведении импульса по пучкам участвуют медленнопроводящие кардиомиоциты II типа. Из атриовентрикулярного узла импульс возбуждения со скоростью 1 — 1,5 м/сек проходит по быстропроводящим кардиомиоцитам III типа и пуркиньеподобным клеткам пучка Гиса и его ножек и затем со скоростью 3—5 м/сек— по их ветвям и проводящим волокнам Пуркинье к кардиомиоцитам сократительного миокарда желудочков сердца (см. также Сердце, физиология) .

Источник: xn--90aw5c.xn--c1avg

Анатомия[править | править код]

ПСС состоит из двух взаимосвязанных частей: синоатриальной (синусно-предсердной) и атриовентрикулярной (предсердно-желудочковой).

К синоатриальной относят синоатриальный узел (узел Кейт-Флака), три пучка межузлового быстрого проведения, связывающие синоатриальный узел с атриовентрикулярным и межпредсердный пучок быстрого проведения, связывающий синоатриальный узел с левым предсердием.

Атриовентрикулярная часть состоит из атриовентрикулярного узла (узел Ашоффа–Тавара), пучка Гиса (включает в себя общий ствол и три ветви: левая передняя, левая задняя и правая) и проводящих волокон Пуркинье.[B: 1]

Кровоснабжение[править | править код]

Иннервация[править | править код]

ПСС морфологически отличается как от мышечной, так и от нервной ткани, но находится в тесной связи и с миокардом, и с внутрисердечной нервной системой.[B: 2]

Эмбриология[править | править код]

Гистология[править | править код]

Атипичные мышечные волокна сердца — это специализированные проводящие кардиомиоциты, богато иннервированные, с небольшим количеством миофибрилл и обилием саркоплазмы.[B: 1]

Синусовый узел[править | править код]

Синусовый узел или синоатриальный узел (САУ) Кисса-Флека (лат. nódus sinuatriális) расположен субэндокардиально в стенке правого предсердия латеральнее устья верхней полой вены, между отверстием верхней полой вены и правым ушком предсердия; отдаёт ветви к миокарду предсердий.[B: 1][B: 2]

Длина САУ ≈ 15 мм, ширина его ≈ 5 мм и толщина ≈ 2 мм. У 65% людей артерия узла берёт своё начало из правой венечной артерии, у остальных — из огибающей ветви левой венечной артерии. САУ богато иннервирован симпатическими и правым парасимпатическим нервами сердца, которые вызывают, соответственно, положительный и отрицательный хронотропные эффекты.[B: 2].

Клетки, составляющие синусовый узел, гистологически отличаются от клеток рабочего миокарда. Хорошим ориентиром служит выраженная a.nodalis (узловая артерия). Клетки синусового узла по размерам меньше клеток рабочего миокарда предсердия. Они группируются в виде пучков, при этом вся сеть клеток погружена в развитый матрикс. На границе синусового узла, обращенной к миокарду устья верхней полой вены, определяется переходная зона, которая может расцениваться как присутствие клеток рабочего миокарда предсердий в пределах синусового узла. Такие участки вклинения клеток предсердия в ткань узла чаще всего встречаются на границе узла и пограничного гребня (выступа стенки правого предсердия сердца, которым заканчиваются вверху гребенчатые мышцы).[B: 3]

Гистологически синусовый узел состоит из т.н. типичных клеток узла. Они располагаются беспорядочно, имеют веретенообразную форму, а иногда разветвления. Для этих клеток характерно слабое развитие сократительного аппарата, случайное распределение митохондрий. Саркоплазматический ретикулум развит хуже, чем в миокарде предсердий, а система T-трубочек отсутствует. Это отсутствие, правда, не является критерием, по которому выделяются «специализированные клетки»: часто система T-трубочек отсутствует и в рабочих кардиомиоцитах предсердия.

По краям синусового узла наблюдаются переходные клетки, отличающиеся от типичных лучшей ориентацией миофибрилл наряду с более высоким процентом межклеточных соединений — нексусов. Находимые ранее «вставочные светлые клетки», по последним данным, являются не более чем артефактом.

Согласно концепции, предложенной T.James и соавт. (1963-1985), связь синусового узла с АВ-узлом обеспечивается за счет наличия 3-х трактов: 1) короткий передний (пучок Бахмана), 2) средний (пучок Венкебаха) и 3) задний (пучок Тореля), более длинный. Обычно импульсы попадают в АВУ по короткому переднему и среднему трактам, на что расходуется 35-45 мсек. Скорость распространения возбуждения по предсердиям составляет 0,8—1,0 м/с. Описаны и другие проводящие тракты предсердий; к примеру, по данным B.Scherlag (1972), по нижнему межпредсердному тракту возбуждение проводится из передней части правого предсердия в нижнезаднюю часть левого предсердия. Считается, что в физиологических условиях эти пучки, а также пучок Тореля находятся в латентном состоянии.[B: 2]

Тем не менее, многими исследователями оспаривается существование каких-либо специализированных пучков между САУ и АВУ. Так, к примеру, в хорошо известной коллективной монографии[B: 3] сообщается следующее:

Полемика по вопросу об анатомическом субстрате для проведения импульсов между синусовым и атриовентрикулярным узлами ведётся уже сто лет, сколько насчитывает и сама история изучения проводящей системы. (…) По мнению Aschoff, Monckeberg и Koch, ткань между узлами является рабочим миокардом предсердий и не содержит гистологически различимых трактов. (…) На наш взгляд, в качестве трёх указанных выше специализированных путей James дал описание практически всего миокарда предсердной перегородки и пограничного гребня. (…) Насколько нам известно, никто до сих пор на основе морфологических наблюдений не доказал, что в межсердечной перегородке и пограничном гребне проходят узкие тракты, каким-либо образом сравнимые с атриовентрикулярным трактом и его ответвлениями.

Область атриовентрикулярного соединения[править | править код]

Предсердно-желудочковый узел (лат. nódus atrioventriculáris) лежит в толще передне-нижнего отдела основания правого предсердия и в межпредсердной перегородке. Длина его составляет 5-6 мм, ширина 2-3 мм. Кровоснабжается он одноименной артерией, которая в 80-90% случаев является ветвью правой коронарной артерии, а в остальных — ветвью левой огибающей артерии.[B: 2]

АВУ представляет собой ось проводящей ткани. Располагается на гребне входного и верхушечного трабекулярного компонентов мышечной части межжелудочковой перегородки. Архитектонику АВ-соединения удобнее рассматривать по восходящей — от желудочка к миокарду предсердий. Ветвящийся сегмент АВ-пучка расположен на гребне апикального трабекулярного компонента мышечной части межжелудочковой перегородки. Предсердный отрезок АВ-оси может быть разделен на компактную зону АВ-узла и переходную клеточную зону. Компактный участок узла по всей своей длине сохраняет тесную связь с фиброзным телом, которое образует его ложе. Он имеет два удлинения, проходящие вдоль фиброзного основания направо к трёхстворчатому клапану и налево — к митральному.

Переходная клеточная зона — это область, диффузно расположенная между сократительным миокардом и специализированными клетками компактной зоны АВ-узла. В большинстве случаев переходная зона более выражена сзади, между двумя удлинениями АВ-узла, но она также образует полуовальное покрытие тела узла.

С точки зрения гистологии, клетки предсердного компонента АВ-соединения мельче, чем клетки рабочего миокарда предсердий. Клетки переходной зоны имеют вытянутую форму и иногда разделены тяжами фиброзной ткани. В компактной зоне АВ-узла клетки расположены более тесно и часто организованы во взаимосвязанные пучки и завитки. Во многих случаях выявляется разделение компактной зоны на глубокий и поверхностный слои. Дополнительным покрытием служит слой переходных клеток, придающий узлу трехслойность. По мере перехода узла в проникающую часть пучка наблюдается увеличение размеров клеток, но в основном клеточная архитектоника сравнима с таковой в компактной зоне узла. Границу между АВ-узлом и проникающей частью одноименного пучка трудно определить под микроскопом, поэтому предпочтительней чисто анатомическое разделение в районе точки входа оси в фиброзное тело. Клетки, составляющие ветвящуюся часть пучка, по своим размерам напоминают клетки миокарда желудочков.

Коллагеновые волокна делят АВУ на кабельные структуры. Эти структуры создают анатомическую основу для продольной диссоциации проведения. Проведение возбуждения по АВУ возможно как в антероградном, так и в ретроградном направлениях. АВУ, как правило, оказывается функционально разделённым продольно на два проводящих канала (медленный α и быстрый β) — это создаёт условия для возникновения пароксизмальной узловой реципроктной тахикардии.

Продолжением АВУ является общий ствол пучка Гиса.

Пучок Гиса[править | править код]

Предсердно-желудочковый пучок (лат. fascículus atrioventriculális), или пучок Гиса, связывает миокард предсердий с миокардом желудочков. В мышечной части межжелудочковой перегородки этот пучок делится на правую и левую ножки (лат. crus déxtrum et crus sinístrum). Концевые разветвления волокон (волокна Пуркинье), на которые распадаются эти ножки, заканчиваются в миокарде желудочков.[B: 1]

Длина общего ствола пучка Гиса 8-18 мм в зависимости от размеров перепончатой части межжелудочковой перегородки, ширина около 2 мм. Ствол пучка Гиса состоит из двух сегментов — прободающего и ветвящегося. Прободающий сегмент проходит через фиброзный треугольник и доходит до мембранной части межжелудочковой перегородки. Ветвящийся сегмент начинается на уровне нижнего края фиброзной перегородки и делится на две ножки: правая направляется к правому желудочку, а левая — к левому, где распределяется на переднюю и заднюю ветви. Передняя ветвь левой ножки пучка Гиса разветвляется в передних отделах межжелудочковой перегородки, в передне-боковой стенке левого желудочка и в передней сосочковой мышце. Задняя ветвь обеспечивает проведение импульса по средним отделам межжелудочковой перегородки, по задне-верхушечным и нижним частям левого желудочка, а также по задней сосочковой мышце. Между ветвями левой ножки пучка Гиса существует сеть анастомозов, по которым импульс при блокаде одной из них попадает в блокированный области за 10-20 мсек. Скорость распространения возбуждения в общем стволе пучка Гиса составляет около 1,5 м/с, в разветвлениях ножек пучка Гиса и проксимальных отделах системы Пуркинье она достигает 3-4 м/с, а в терминальных отделах волокон Пуркинье снижается и в рабочем миокарде желудочков равняется примерно 1 м/с. [B: 2]

Прободающая часть ствола Гиса кровоснабжается из артерии АВУ; правая ножка и передняя ветвь левой ножки — от передней межжелудочковой венечной артерии; задняя ветвь левой ножки — от задней межжелудочковой венечной артерии.[B: 2]

Волокна Пуркинье[править | править код]

Бледные или набухшие клетки (так называемые клетки Пуркинье) редко встречаются в специализированной области атриовентрикулярного соединения у младенцев и детей младшего возраста.

Функциональное значение[править | править код]

Координируя сокращения предсердий и желудочков, ПСС обеспечивает ритмичную работу сердца, т.е нормальную сердечную деятельность. В частности, именно ПСС обеспечивает автоматизм сердца.

Функционально синусовый узел является водителем ритма первого порядка. В состоянии покоя в норме он генерирует 60-90 импульсов в минуту.[B: 2]

В АВ-соединении, главным образом в пограничных участках между АВУ и пучком Гиса, происходит значительная задержка волны возбуждения. Скорость проведения сердечного возбуждения замедляется до 0,02-0,05 м/с. Такая задержка возбуждения в АВУ обеспечивает возбуждение желудочков только после окончания полноценного сокращения предсердий. Таким образом, основными функциями АВУ являются: 1) антероградная задержка и фильтрация волн возбуждения от предсердий к желудочкам, обеспечивающие скоординированное сокращение предсердий и желудочков и 2) физиологическая защита желудочков от возбуждения в уязвимой фазе потенциала действия (с целью профилактики рециркуляторных желудочковых тахикардий). Клетки АВУ также способны брать на себя функции центра автоматизма второго порядка при угнетении функции САУ. Они обычно вырабатывают 40-60 импульсов в минуту. [B: 2] Патологии:

  • Синдром слабости синусового узла.
  • Патологические добавочные проводящие пути между предсердиями и желудочками.
  • Блокада проведения.

Добавочные пучки между предсердиями и желудочками являются анатомическим субстратом для классического варианта предвозбуждения желудочков (синдром Вольфа-Паркинсона-Уайта)[B: 3].

Источник: ru.wikipedia.org


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.