Общее периферическое сопротивление сосудов это


5. ОБЩЕЕ ПЕРИФЕРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол. Однако изменения тонуса в различных отделах сердечнососудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других — вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта — бесконечно большое ОПСС и отсутствие его току крови. При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС. При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5—6 раз и более. Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим. В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.


Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две группы: сосуды сопротивления и емкостные сосуды. Первые регулируют величину ОПСС, АД и степень кровоснабжения отдельных органов и систем организма; вторые, вследствие большой емкости, участвуют в поддержании венозного возврата к сердцу, а следовательно, и МОС.

Сосуды «компрессионной камеры» — аорта и ее крупные ветви — поддерживают градиент давления вследствие растяжимости во время систолы. Это смягчает пульсирующий выброс и делает поступление крови на периферию более равномерным. Прекапиллярные сосуды сопротивления — мелкие артериолы и артерии — поддерживают гидростатическое давление в капиллярах и тканевый кровоток. На их долю выпадает большая часть сопротивления кровотоку. Прекапиллярные сфинктеры, изменяя число функционирующих капилляров, меняют площадь обменной поверхности. В них находятся а-рецепторы, которые при воздействии катехоламинов вызывают спазм сфинктеров, нарушение кровотока и гипоксию клеток. а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение а-рецепторов и снимающими спазм в сфинктерах.


Капилляры являются наиболее важными сосудами обмена. Они осуществляют процесс диффузии и фильтрации — абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Они относятся к системе емкостных сосудов и в патологических состояниях могут вмещать до 90 % объема крови. В нормальных условиях они содержат до 5—7 % крови.

Посткапиллярные сосуды сопротивления — мелкие вены и венулы — регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции, но нейрогенные раздражители также оказывают действие на пре- и посткапиллярные сфинктеры.

Венозные сосуды, вмещающие до 85 % объема крови, не играют значительной роли в сопротивлении, а выполняют функцию емкости и наиболее подвержены симпатическим влияниям. Общее охлаждение, гиперадреналинемия и гипервентиляция приводят к венозному спазму, что имеет большое значение в распределении объема крови. Изменение емкости венозного русла регулирует венозный возврат крови к сердцу.

Шунтовые сосуды — артериовенозные анастомозы — во внутренних органах функционируют только в патологических состояниях, в коже выполняют терморегулирующую функцию.

6. ОБЪЕМ ЦИРКУЛИРУЮЩЕЙ КРОВИ

Определить понятие «объем циркулирующей крови» довольно трудно, так как он является динамической величиной и постоянно изменяется в широких пределах. В состоянии покоя не вся кровь принимает участие в циркуляции, а только определенный объем, совершающий полный кругооборот в относительно короткий промежуток времени, необходимый для поддержания кровообращения. На этом основании в клиническую практику вошло понятие «объем циркулирующей крови».


У молодых мужчин ОЦК равен 70 мл/кг. Он с возрастом уменьшается до 65 мл/кг массы тела. У молодых женщин ОЦК равен 65 мл/кг и тоже имеет тенденцию к уменьшению. У двухлетнего ребенка объем крови равен 75 мл/кг массы тела. У взрослого мужчины объем плазмы составляет в среднем 4—5 % массы тела. Таким образом, у мужчины с массой тела 80 кг объем крови в среднем 5600 мл, а объем плазмы — 3500 мл. Более точные величины объемов крови получаются с учетом площади поверхности тела, так как отношение объема крови к поверхности тела с возрастом не меняется. У тучных пациентов ОЦК в пересчете на 1 кг массы тела меньше, чем у пациентов с нормальной массой. Например, у полных женщин ОЦК равен 55—59 мл/кг массы тела. В норме 65—75 % крови содержится в венах, 20 % — в артериях и 5—7 % — в капиллярах (табл. 2).

Потеря 200—300 мл артериальной крови у взрослых, равная примерно 1/3 ее объема, может вызвать выраженные гемодинамические сдвиги, такая же потеря венозной крови составляет всего l/10—1/13 часть ее и не приводит к каким-либо нарушениям кровообращения.

Таблица 2.

Распределение объемов крови в орга­низме


Орган или система

Процент от общего объема крови

Малый круг кровообращения

20-25

Сердце

8-10

Легкие

12-15

Большой круг кровообращения

75-80

Артериальная система

15-20

Венозная система

65-75

Капиллярное русло

5-7,5

Уменьшение объема крови при кровопотере обусловлено потерей эритроцитов и плазмы, при дегидратации — потерей воды, при анемии — потерей эритроцитов и при микседеме — снижением числа эритроцитов и объема плазмы. Гиперволемия характерна для беременности, сердечной недостаточности и полиглобулии.

Метаболизм и кровообращение. Существует тесная корреляционная зависимость между состоянием кровообращения и метаболизмом. Величина кровотока в любой части тела возрастает пропорционально уровню метаболизма. В различных органах и тканях кровоток регулируется разными веществами: для мышц, сердца, печени регуляторами являются кислород и энергетические субстраты, для клеток головного мозга — концентрация углекислого газа и кислород, для почек — уровень ионов и азотистых шлаков.


мпература тела регулирует кровоток в коже. Несомненным, однако, является факт высокой степени корреляции между уровнем кровотока в любой части тела и концентрацией кислорода в крови. Повышение потребности тканей в кислороде приводит к возрастанию кровотока. Исключением является ткань мозга. Как недостаток кислорода, так и избыток углекислого газа в равной степени являются мощными стимуляторами мозгового кровообращения. Клетки различно реагируют на недостаток тех или иных веществ, участвующих в метаболизме. Это связано с разной потребностью в них, разными утилизацией и резервом их в крови.

Величина резерва того или иного вещества называется «коэффициентом безопасности», или «коэффициентом утилизации». Данный резерв вещества утилизируется тканями в чрезвычайных условиях и полностью зависит от состояния МОС. При постоянном уровне кровотока транспорт кислорода и его утилизация могут возрасти в 3 раза за счет более полной отдачи кислорода гемоглобином. Иными словами, резерв кислорода может увеличиться только в 3 раза без повышения МОС. Поэтому «коэффициент безопасности» для кислорода равен 3. Для глюкозы он также равен 3, а для других веществ он значительно выше — для углекислого газа — 25, аминокислот — 36, жирных кислот — 28, продуктов белкового обмена — 480. Разница между «коэффициентом безопасности» кислорода с глюкозой и таковым других веществ огромна.


Источник: www.KazEdu.kz

 

Изобретение относится к медицине, в частности к определению показателей, отражающих функциональное состояние сердечно-сосудистой системы, и может быть использовано в клинической физиологии, физической культуре и спорте, кардиологии, других областях медицины. Для большинства проводимых физиологических исследований на человеке, в которых измеряются показатели пульса, систолического (САД) и диастолического (ДАД) артериального давления полезны интегральные показатели состояния сердечно-сосудистой системы. Важнейшим из таких показателей, отражающим не только работу сердечно-сосудистой системы, но и уровень обменных и энергетических процессов в организме, является минутный объем крови (МОК). Общее периферическое сопротивление сосудов (ОПСС) также важнейший параметр, использующийся для оценки состояния центральной гемодинамики [4, 7].

Наиболее популярной методикой расчета ударного объема (УО), а на его основе и МОК является формула Старра [8]:

УО=90,97+0,54·ПД-0,57·ДАД-0,61·В,

где ПД — пульсовое давление, ДАД — диастолическое давление, В — возраст. Далее МОК вычисляется как произведение УО на частоту сердечных сокращений (МОК=УО·ЧСС). Но точность формулы Старра подвергается сомнению [2]. Коэффициент корреляции между величинами УО, полученными методами импедансной кардиографии, и величинами, рассчитанными по формуле Старра, составил всего 0,288 [2]. По нашим данным, расхождение между величиной УО (а, следовательно, и МОК), определенной с помощью метода тетраполярной реографии и рассчитанной по формуле Старра, превышает в отдельных случаях 50% даже в группе здоровых испытуемых.


Известен способ вычисления МОК по формуле Лилье-Штрандера и Цандера [1]:

МОК=АДред.·ЧСС,

где АДред. — артериальное давление редуцированное, АДред.=ПД·100/Ср.Да, ЧСС — частота сердечных сокращений, ПД — пульсовое давление, вычисляемое по формуле ПД=САД-ДАД, а Ср.Да — среднее давление в аорте, вычисляемое по формуле [1, 6]: Ср.Да=(САД+ДАД)/2. Но для того, чтобы формула Лилье-Штрандера и Цандера отражала МОК, необходимо, чтобы численное значение АДред., представляющее собой ПД умноженное на поправочный коэффициент (100/Ср.Да), совпадало со значением УО, выбрасываемого желудочком сердца за одну систолу. Фактически же, при величине Ср.Да=100 мм рт.ст. величина АДред. (а, следовательно, и УО) приравнивается величине ПД, при Ср.Да<100 мм рт.ст. — АДред. несколько превышает ПД, а при Ср.Да>100 мм рт.ст. — АДред. становится меньше чем ПД. На самом деле, величина ПД не может приравниваться к величине УО даже и при Ср.Да=100 мм рт.ст. Нормальные средние показатели ПД — 40 мм рт.ст., а УО — 60-80 мл [6]. Сопоставление показателей МОК, вычисленных по формуле Лилье-Штрандера и Цандера в группе здоровых испытуемых (2,3-4,2 л [1]), с нормальными величинами МОК (5-6 л [6]) показывает расхождение между ними в 40-50%.


Технический результат заявляемого способа — повышение точности определения минутного объема крови (МОК) и общего периферического сопротивления сосудов (ОПСС) — важнейших показателей, отражающих работу сердечно-сосудистой системы, уровень обменных и энергетических процессов в организме, оценки состояния центральной гемодинамики за счет применения физически и физиологически обоснованных расчетных формул.

Заявляется способ определения интегральных показателей состояния сердечно-сосудистой системы, заключающийся в том, что у испытуемого в состоянии покоя измеряют частоту сердечных сокращений (ЧСС), систолическое артериальное давление (САД), диастолическое артериальное давление (ДАД), вес и рост. После этого определяют общее периферическое сопротивление сосудов (ОПСС). Величина ОПСС пропорциональна диастолическому артериальному давлению (ДАД) — чем больше ДАД, тем больше ОПСС; временным интервалам между периодами изгнания (Тпи) крови из желудочков сердца — чем больше интервал между периодами изгнания, тем больше ОПСС; объему циркулирующей крови (ОЦК) — чем больше ОЦК, тем меньше ОПСС (ОЦК зависит от веса, роста и пола человека). ОПСС рассчитывают по формуле:

ОПСС=К·ДАД·(Тсц-Тпи)/Тпи,

где ДАД — диастолическое артериальное давление;


Тсц — период сердечного цикла, вычисляемый по формуле Тсц=60/ЧСС;

Тпи — период изгнания, вычисляемый по формуле [3, 5]:

Тпи=0,268·Тсц0,36≈Тсц·0,109+0,159;

К — коэффициент пропорциональности, зависящий от массы тела (МТ), роста (Р) и пола человека. К=1 у женщин при МТ=49 кг и Р=150 см; у мужчин при МТ=59 кг и Р=160 см. В остальных случаях К для здоровых испытуемых вычисляется по правилам, представленным в табл.1.

МОК рассчитывается по уравнению:

МОК=Ср.Да·133,32·60/ОПСС,

где Ср.Да — среднее давление в аорте, вычисляемое по формуле:

Ср.Да=(САД+ДАД)/2;

133,32 — количество Па в 1 мм рт.ст.;

ОПСС — общее периферическое сопротивление сосудов (Па·мл-1·с).

В таблице 2 приведены примеры расчетов МОК (РМОК) по этому способу у 10 здоровых испытуемых в возрасте 18-23 лет, сопоставленные с величиной МОК, определенной с помощью неинвазивной мониторной системы «МАРГ 10-01» (Микролюкс, Челябинск), в основе работы которой лежит метод тетраполярной биоимпедансной реокардиографии (погрешность 15%).

Отклонение расчетной величины МОК от ее измеренной величины по методу тетраполярной биоимпедансной реокардиографии у 20 здоровых испытуемых в возрасте 18-35 лет в среднем составило 5,45%. Коэффициент корреляции между этими величинами составил 0,94.

Отклонение рассчитанных величин ОПСС и МОК по данному методу от измеряемых величин может быть значительным лишь при существенной ошибке определения коэффициента пропорциональности К.


следнее возможно при отклонениях в работе механизмов регуляции ОПСС и/или при избыточных отклонениях от нормы МТ (МТ>>Р(см)-101). Однако погрешности определения ОПСС и МОК у этих пациентов могут быть нивелированы либо за счет введения поправки в расчет коэффициента пропорциональности (К), либо введением дополнительного поправочного коэффициента в формулу расчета ОПСС. Эти поправки могут быть как индивидуальными, т.е. основанными на предварительных измерениях оцениваемых показателей у конкретного пациента, так и групповыми, т.е. основанными на статистически выявленных сдвигах К и ОПСС у определенной группы пациентов (с определенным заболеванием).

Реализация способа осуществляется следующим образом.

Для проведения измерений ЧСС, САД, ДАД, веса и роста могут использоваться любые сертифицированные аппараты для автоматического, полуавтоматического, ручного измерения пульса, артериального давления, веса и роста. У испытуемого в состоянии покоя измеряют ЧСС, САД, ДАД, массу тела (вес) и рост.

После этого вычисляют коэффициент пропорциональности (К), необходимый для вычисления ОПСС и зависящий от массы тела (МТ), роста (Р) и пола человека. У женщин К=1 при МТ=49 кг и Р=150 см;

при МТ≤49 кг К=(МТ·Р)/7350; при МТ>49 кг К=7350/(МТ·Р).

У мужчин К=1 при МТ=59 кг и Р=160 см;

при МТ≤59 кг К=(МТ·Р)/9440; при МТ>59 кг К=9440/(МТ·Р).

После этого определяют ОПСС по формуле:

ОПСС=К·ДАД·(Тсц-Тпи)/Тпи,

где Тсц — период сердечного цикла, вычисляемый по формуле

Тсц=60/ЧСС;

Тпи — период изгнания, вычисляемый по формуле [3, 4]:

Тпи=0,268·Тсц0,36≈Тсц·0,109+0,159.

МОК рассчитывается по уравнению:

МОК=Ср.Да·133,32·60/ОПСС,

где Ср.Да — среднее давление в аорте, вычисляемое по формуле:

Ср.Да=(САД+ДАД)/2;

133,32 — количество Па в 1 мм рт.ст.;

ОПСС — общее периферическое сопротивление сосудов (Па·мл-1·с).

Реализация способа поясняется нижеприведенным примером.

Женщина — 34 г., рост 164 см, МТ=65 кг, пульс (ЧСС) — 71 уд./мин, САД=113 мм рт.ст., ДАД=71 мм рт.ст.

К=7350/(164·65)=0,689

Тсц=60/71=0,845

Тпи≈Тсц·0,109+0,159=0,845·0,109+0,159=0,251

ОПСС=К·ДАД·(Тсц-Тпи)/Тпи=0,689·71·(0,845-0,251)/0,251=115,8≈116 Па·мл-1·с

Ср.Да=(САД+ДАД)/2=(113+71)/2=92 мм рт.ст.

МОК=Ср.Да·133,32·60/ОПСС=92·133,32·60/116=6344 мл≈6,3 л

Отклонение этой рассчитанной величины МОК у данной испытуемой от величины МОК, определенной с помощью тетраполярной биоимпедансной реокардиографии, составило менее 1% (см. табл.2, испытуемая №5).

Таким образом, предложенный способ позволяет достаточно точно определять величины ОПСС И МОК.

СПИСОК ЛИТЕРАТУРЫ

1. Вегетативные расстройства: Клиника, диагностика, лечение. / Под ред. А.М.Вейна. — М.: ООО «Медицинское информационное агентство», 2003. — 752 с., с.57.

2. Зислин Б.Д., Чистяков А.В. Мониторинг дыхания и гемодинамики при критических состояниях. — Екатеринбург: Сократ, 2006. — 336 с., с.200.

3. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965. 275 с., с.111.

4. Мурашко Л.Е., Бадоева Ф.С., Петрова С.Б., Губарева М.С. Способ интегрального определения показателей центральной гемодинамики. // Патент РФ №2308878. Опубликовано 27.10.2007.

5. Парин В.В., Карпман В.Л. Кардиодинамика. // Физиология кровообращения. Физиология сердца. В серии: «Руководство по физиологии». Л.: «Наука», 1980. с.215-240., с.221.

6. Филимонов В.И. Руководство по общей и клинической физиологии. — М.: Медицинское информационное агентство, 2002. — с.414-415, 420-421, 434.

7. Чазов Е.И. Болезни сердца и сосудов. Руководство для врачей. М., 1992, т.1, с.164.

8. Ctarr I// Circulation, 1954. — V.19 — P.664.

1. Способ определения интегральных показателей состояния сердечно-сосудистой системы, заключающийся в определении общего периферического сопротивления сосудов (ОПСС) у здоровых испытуемых, включающий измерение частоты сердечных сокращений (ЧСС), систолического артериального давления (САД), диастолического артериального давления (ДАД), отличающийся тем, что также измеряют массу тела (МТ, кг), рост (Р, см) для определения коэффициента пропорциональности (К), у женщин при МТ≤49 кг по формуле К=(МТ·Р)/7350, при МТ>49 кг по формуле К=7350/(МТ·Р), у мужчин при МТ≤59 кг по формуле К=(МТ·Р)/9440, при МТ>59 кг по формуле К=9440/(МТ·Р), величину ОПСС вычисляют по формуле
ОПСС=К·ДАД·(Тсц-Тпи)/Тпи,
где Тсц — период сердечного цикла, вычисляемый по формуле
Тсц=60/ЧСС;
Тпи — период изгнания, Тпи=0,268·Тсц0,36≈Тсц·0,109+0,159.

2. Способ определения интегральных показателей состояния сердечно-сосудистой системы, заключающийся в определении минутного объема крови (МОК) у здоровых испытуемых, отличающийся тем, что МОК рассчитывают по уравнению: МОК=Ср.Да·133,32·60/ОПСС,
где Ср.Да — среднее давление в аорте, вычисляемое по формуле
Ср.Да=(САД+ДАД)/2;
133,32 — количество Па в 1 мм рт.ст.;
ОПСС — общее периферическое сопротивление сосудов (Па·мл-1·с).

Источник: findpatent.ru

Физиологическая роль артериол в регуляции кровотока

В масштабе организма, от тонуса артериол зависит общее периферическое сопротивление, которое, наряду с ударным объёмом сердца определяет величину артериального давления.

Кроме того, тонус артериол может изменяться локально, в пределах данного органа или ткани. Локальное изменение тонуса артериол, не оказывая заметного влияния на общее периферическое сопротивление, будет определять величину кровотока в данном органе. Так, тонус артериол заметно снижается в работающих мышцах, что приводит к увеличению их кровоснабжения.

Регуляция тонуса артериол

Поскольку изменение тонуса артериол в масштабе целостного организма и в масштабе отдельных тканей имеет совершенно различное физиологическое значение, существуют как локальные, так и центральные механизмы его регуляции.

Локальная регуляция сосудистого тонуса

В отсутствие всяких регуляторных воздействий изолированная артериола, лишенная эндотелия, сохраняет некоторый тонус, зависящий от самих гладких мышц. Он называется базальным тонусом сосуда. На него могут оказывать влияние такие факторы среды, как pH и концентрация CO2 (снижение первой и повышение второй приводят к уменьшению тонуса). Эта реакция оказывается физиологически целесообразной, так как следующее за локальным снижением тонуса артериол увеличение местного кровотока, собственно, и приведет к восстановлению тканевого гомеостаза.

Далее, эндотелий сосудов постоянно синтезирует как сосудосуживающие (прессорные) (эндотелин), так и сосудорасширяющие (депрессорные) факторы (оксид азота NO и простациклин).

При повреждении сосуда тромбоциты выделяют мощный сосудосуживающий фактор тромбоксан A2, что приводит к спазму поврежденного сосуда и временной остановке кровотечения.

Напротив, медиаторы воспаления, такие, как простагландин E2 и гистамин вызывают снижение тонуса артериол. Изменение метаболического состояния ткани может менять баланс прессорных и депрессорных факторов. Так, снижение pH и увеличение концентрации CO2 смещает баланс в пользу депрессорных влияний.

Системные гормоны, регулирующие сосудистый тонус

Гормон нейрогипофиза вазопрессин, как явствует из его названия (лат. vas — сосуд, pressio — давление) оказывает некоторое, хотя и скромное, сосудосуживающее действие. Гораздо более мощным прессорным гормоном является ангиотензин (греч. ангио — сосуд, тензио — давление) — полипептид, который формируется в плазме крови при снижении давления в артериях почек. Весьма интересным действием на сосуды обладает гормон мозгового вещества надпочечников адреналин, который продуцируется при стрессе и метаболически обеспечивает реакцию «борьбы или бегства». В гладких мышцах артериол большинства органов имеются α-адренорецепторы, вызывающие сужение сосудов, однако в артериолах скелетных мышц и головного мозга преобладают β2-адренорецепторы, которые вызывают снижение сосудистого тонуса. В результате, во-первых, возрастает общее сосудистое сопротивление и, следовательно, артериальное давление, а во-вторых, сопротивление сосудов скелетных мышц и мозга снижается, что приводит к перераспределению кровотока в эти органы и резкое увеличение их кровоснабжения.

Сосудосуживающие и сосудорасширяющие нервы

Все, или почти все, артериолы организма получают симпатическую иннервацию. Симпатические нервы в качестве нейромедиатора имеют катехоламины (в большинстве случаев норадреналин) и имеют сосудосуживающее действие. Поскольку аффинность β-адренорецепторов к норадреналину мала, то даже в скелетных мышцах при действии симпатических нервов преобладает прессорный эффект.

Парасимпатические сосудорасширяющие нервы, нейромедиаторами которых являются ацетилхолин и оксид азота, встречаются в организме человека в двух местах: слюнных железах и пещеристых телах. В слюнных железах их действие приводит к увеличению кровотока и усилению фильтрации жидкости из сосудов в интерстиций и далее к обильной секреции слюны, в пещеристых телах снижение тонуса артериол под действием сосудорасширяющих нервов обеспечивает эрекцию.

Участие артериол в патофизиологических процессах

Воспаление и аллергические реакции

Важнейшая функция воспалительной реакции — локализация и лизис чужеродного агента, вызвавшего воспаление. Функции лизиса выполняют клетки, доставляющиеся в очаг воспаления током крови (главным образом, нейтрофилы и лимфоциты. Соответственно, оказывается целесообразным увеличить в очаге воспаления локальный кровоток. Поэтому «медиаторами воспаления» служат вещества, имеющие мощный сосудорасширяющий эффект — гистамин и простагландин E2. Три из пяти классических симптомов воспаления (покраснение, отёк, жар) вызваны именно расширением сосудов. Увеличение притока крови — следовательно, краснота; рост давления в капиллярах и увеличение фильтрации из них жидкости — следовательно, отёк (впрочем, в его формировании участвует и рост проницаемости стенок капилляров), увеличение притока нагретой крови от ядра тела — следовательно, жар (хотя здесь, возможно, не меньшую роль играет увеличение скорости обмена веществ в очаге воспаления).

Однако, гистамин, кроме защитной воспалительной реакции, является главным медиатором аллергий.

Это вещество секретируется тучными клетками, когда сорбированные на их мембранах антитела связываются с антигенами из группы иммуноглобулинов E.

Аллергия на какое-то вещество возникает, когда против него нарабатывается достаточно много таких антител и они массово сорбируются на тучные клетки в масштабах организма. Тогда, при контакте вещества (аллергена) с этими клетками, они секретируют гистамин, что вызывает по месту секреции расширение артериол, с последующими болью, покраснением и отеком. Таким образом, все варианты аллергии, от насморка и крапивницы, до отёка Квинке и анафилактического шока, в значительной мере оказываются связаны с гистамин-зависимым падением тонуса артериол. Разница состоит в том, где и насколько массивно происходит это расширение.

Особенно интересным (и опасным) вариантом аллергии является анафилактический шок. Он возникает, когда аллерген, обычно после внутривенной или внутримышечной инъекции, распространяется по всему телу и вызывает секрецию гистамина и расширение сосудов в масштабах организма. В этом случае максимально наполняются кровью все капилляры, но их общая ёмкость превышает объём циркулирующей крови. В результате, кровь не возвращается из капилляров в вены и предсердия, эффективная работа сердца оказывается невозможной и давление падает до нуля. Реакция эта развивается в течение нескольких минут и ведёт к гибели больного. Наиболее эффективное мероприятие при анафилактическом шоке — внутривенное введение вещества, обладающего мощным сосудосуживающим действием — лучше всего норадреналина.

Источник: dic.academic.ru

  1. Александров А.Л., Гусаров Г.В., Егурнов Н.И., Семенов А.А. Некоторые косвенные методы измерения сердечного выброса и диагностики легочной гимертензии. — В кн.: Проблемы пульмонологии. Л., 1980, вып. 8, с.189.
  2. Амосов Н.М., Лшцук В.А., Пацкина С.А. и др. Саморегуляция сердца. Киев, 1969.
  3. Андреев Л.Б., Андреева Н.Б. Кинетокардиография. Ростов н/Д: Изд-во Рост, у-та, 1971.
  4. Брин В.Б. Фазовая структура систолы левого желудочка при деафферентации синокаротидных рефлексогенных зон у взрослых собак и щенков. — Пат. физиол, и экспер. терап., 1975, №5, с.79.
  5. Брин B.Б. Возрастные особенности реактивности синокаротидного прессорного механизма. — В кн.: Физиология и биохимия онтогенеза. Л., 1977, с.56.
  6. Брин В.Б. Влияние обзидана на системную гемодинамику у собак в онтогенезе. — Фармакол. и токсикол., 1977, №5, с.551.
  7. Брин В.Б. Влияние альфа-адреноблокатора пирроксана на системную гемодинамику при вазоренальной гипертензии у щенков и собак. — Бюл. экспер. биол. и мед., 1978, №6, с.664.
  8. Брин В.Б. Сравнительно-онтогенетический анализ патогенеза артериальных гипертензий. Автореф. на соиск. уч. ст. док. мед. наук, Ростов н/Д, 1979.
  9. Брин В.Б., Зонис Б.Я. Фазовая структура сердечного цикла у собак в постнатальнал отногенезе. — Бюл. экспер. биол. и мед., 1974, №2, с. 15.
  10. Брин В.Б., Зонис Б.Я. Функциональное состояние сердца и гемодинамика малого круга при дыхательной недостаточности. — В кн.: Дыхательная недостаточность в клинике и эксперименте. Тез. докл. Всес. конф. Куйбышев, 1977, с.10.
  11. Брин В.Б., Сааков Б.А., Кравченко А.Н. Изменения системной гемодинамики при экспериментальной реноваскулярной гипертонии у собак разного возраста. Cor et Vasa, Ed.Ross, 1977, т.19, №6, с.411.
  12. Вейн А.М., Соловьева А.Д., Колосова О.А. Вегетно-сосудистая дистония. М., 1981.
  13. Гайтон А. Физиология кровообращения. Минутный объем сердца и его регуляция. М., 1969.
  14. Гуревич М.И., Берштейн С.А. Основы гемодинамики. — Киев, 1979.
  15. Гуревич М.И., Берштейн С.А., Голов Д.А. и др. Определение сердечного выброса методом термодилюции. — Физиол. журн. СССР, 1967, т.53, №3, с.350.
  16. Гуревич М.И., Брусиловский Б.М., Цирульников В.А., Дукин Е.А. Количественная оценка величины сердечного выброса реографическим методом. — Врачебное дело, 1976, № 7, с.82.
  17. Гуревич М.И., Фесенко Л.Д., Филиппов М.М. О надежности определения сердечного выброса методом тетраполярной грудной импедансной реографии. — Физиол. журн. СССР, 1978, т.24, № 18, с.840.
  18. Дастан Х.П. Методы исследования гемодинамики у больных гипертензией. — В кн.: Артериальные гипертензии. Материалы советско-американского симпозиума. М., 1980, с.94.
  19. Дембо А.Г., Левина Л.И,, Суров Е.Н. Значение определения давления в малом круге кровообращения у спортсменов. — Теория и практика физической культуры, 1971, № 9, с.26.
  20. Душанин С.А., Морев А.Г., Бойчук Г.К. О легочной гипертензии при циррозе печени и определении ее графическими методами. — Врачебное дело, 1972, №1, с.81.
  21. Елизарова Н.А., Битар С., Алиева Г.Э., Цветков А.А. Изучение регионарного кровообращения с помощью импедансометрии. — Терап.архив, 1981, т.53, № 12, с.16.
  22. Заславская P.M. Фармакологические воздействия на легочное кровообращение. М., 1974.
  23. Зернов Н.Г., Кубергер М.Б., Попов А.А. Легочная гипертензия в детском возрасте. М., 1977.
  24. Зонис Б.Я. Фазовая структура сердечного цикла по данным кинетокардиографии у собак в постнатальном онтогенезе. — Журн. эволюцион. биохимии и физиол., 1974, т.10, № 4, с.357.
  25. Зонис Б.Я. Электромеханическая деятельность сердца у собак различного возраста в норме и при развитии реноваскулярной гипертонии, Автореф. дис. на соиск. уч.ст. канд.мед.наук, Махачкала, 1975.
  26. Зонис Б.Я., Брин В.Б. Влияние однократного приема альфа-адренергического блокатора пирроксана на кардио- и гемодинамку у здоровых людей и больных артериальными гипертензиями, — Кардиология, 1979, т.19, № 10, с.102.
  27. Зонис Я.М., Зонис Б.Я. О возможности определения давления в малом круге кровообращения по кинетокардиограмме при хронических заболеваниях легких. — Терап. архив, 4977, т.49, № 6, с.57.
  28. Изаков В.Я., Иткин Г.П., Мархасин B.C. и др. Биомеханика сердечной мышцы. М., 1981.
  29. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965
  30. Кедров А.А. Попытка количественной оценки центрального и периферического кровообращения электрометрическим путем. — Клиническая медицина, 1948, т.26, № 5, с.32.
  31. Кедров А.А. Электроплетизмография как метод объективной оценки кровообращения. Автореф. дис. на соиск. уч. ст. канд. мед. наук, Л., 1949.
  32. Клиническая реография. Под ред. проф. В.Т.Шершнева, Киев, 4977.
  33. Коротков Н.С. К вопросу о методах исследования кровяного давления. — Известия ВМА, 1905, № 9, с.365.
  34. Лазарис Я.А., Серебровская И.А. Легочное кровообращение. М., 1963.
  35. Лериш Р. Воспоминания о моей минувшей жизни. М., 1966.
  36. Мажбич Б.И., Иоффе Л.Д., Замещений М.Е. Клинико-физиологические аспекты регионарной электроплетизмографии легких. Новосибирск, 1974.
  37. Маршалл Р.Д., Шефферд Дж. Функция сердца у здоровых и бальных. М., 1972.
  38. Меерсон Ф.З. Адаптация сердца к большой нагрузке и сердечная недостаточность. М., 1975.
  39. Методы исследования кровообращения. Под общей редакцией проф. Б.И.Ткаченко. Л., 1976.
  40. Мойбенко А.А., Повжитков М.М., Бутенко Г.М. Цитотоксические повреждения сердца и кардиогенный шок. Киев, 1977.
  41. Мухарлямов Н.М. Легочное сердце. М., 1973.
  42. Мухарлямов Н.М., Сазонова Л.Н., Пушкарь Ю.Т. Исследование периферического кровообращения с помощью автоматизированной окклюзионной плетизмографии, — Терап. архив, 1981, т.53, № 12, с.3.
  43. Оранский И.Е, Акселерационная кинетокардиография. М., 1973.
  44. Орлов В.В. Плетизмография. М.-Л., 1961.
  45. Осколкова М.К., Красина Г.А. Реография в педиатрии. М., 1980.
  46. Парин В.В., Меерсон Ф.З. Очерки клинической физиологии кровообращения. М., 1960.
  47. Парин В.В. Патологическая физиология малого круга кровообращения В кн.: Руководство по патологической, физиологии. М., 1966, т.3, с. 265.
  48. Петросян Ю.С. Катетеризация сердца при ревматических пороках. М., 1969.
  49. Повжитков М.М. Рефлекторная регуляция гемодинамики. Киев, 1175.
  50. Пушкарь Ю.Т., Большов В.М., Елизаров Н.А. и др. Определение сердечного выброса методом тетраполярной грудной реографии его метрологические возможности. — Кардиологии, 1977, т.17, №17, с.85.
  51. Радионов Ю.А. Об исследовании гемодинамики методом разведения красителя. — Кардиология, 1966, т.6, №6, с.85.
  52. Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики. Л., 1974.
  53. Сазонова Л.Н., Больнов В.М., Максимов Д.Г. и др. Современные методы изучения в клинике состояния резистивных и емкостных сосудов. -Терап. архив, 1979, т.51, №5, с.46.
  54. Сахаров M.П., Орлова Ц.Р., Васильева А.В., Трубецкой А.З. Два компонента сократимости желудочков сердца и их определение на основе неинвазивной методики. — Кардиология, 1980, т.10, №9, с.91.
  55. Селезнев С.А.., Вашетина С.М., Мазуркевич Г.С. Комплексная оценка кровообращения в экспериментальной патологии. Л., 1976.
  56. Сывороткин М.Н. Об оценке сократительной функции миокарда. — Кардиология, 1963, т.З, №5, с.40.
  57. Тищенко М.И. Биофизические и метрологические основы интегральных методов определения ударного объема крови человека. Автореф. дис. на соиск. уч. ст. докт. мед. наук, М., 1971.
  58. Тищенко М.И., Сеплен М.А., Судакова З.В. Дыхательные изменения ударного объема левого желудочка здорового человека. — Физиол. журн. СССР, 1973, т.59, №3, с.459.
  59. Тумановекий М.Н., Сафонов К.Д. Функциональная диагностика заболеваний сердца. М., 1964.
  60. Уигерс К. Динамика кровообращения. М., 1957.
  61. Фельдман С.Б. Оценка сократительной функции миокарда по длительности фаз систолы. М., 1965.
  62. Физиология кровообращения. Физиология сердца. (Руководство по физиологии), Л., 1980.
  63. Фолков Б., Нил Э. Кровообращение. М., 1976.
  64. Шершевский Б.М. Кровообращение в малом круге. М., 1970.
  65. Шестаков Н.М. 0 сложности и недостатках современных методов определения объема циркулирующей крови и о возможности более простого и быстрого метода его определения. — Терап. архив, 1977, №3, с.115. И.устер Л.А., Бордюженко И.И. О роли компонентов формулы определения ударного объема крови методом интегральной реографии тела. -Терап. зрхив, 1978, т.50, ?4, с.87.
  66. Agress С.M., Wegnes S., Frement В.P. et al. Measurement of strolce volume by the vbecy. Aerospace Med., 1967, Dec, p.1248
  67. Blumberger K. Die Untersuchung der Dinamik des Herzens bein Menshen. Ergebn.Med., 1942, Bd.62, S.424.
  68. Bromser P., Hanke С. Die physikalische Bestimiung des Schlagvolumes der Herzens. — Z.Kreislaufforsch., 1933, Bd.25, № I, S.II.
  69. Burstin L. -Determination of pressure in the pulmonary by external graphic recordings. -Brit.Heart J., 1967, v.26, p.396.
  70. Eddleman E.E., Wilis K., Reeves T.J., Harrison Т.К. The kinetocardiogram. I. Method of recording precardial movements. -Circulation, 1953, v.8, p.269
  71. Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. -Quart.J.Exp.Physiol., 1954, v.39, P.153
  72. Fick A. Über die ilessung des Blutquantums in den Herzventrikeln. Sitzungsbericht der Würzburg: Physiologisch-medizinischer Gesellschaft, 1970, S.36
  73. Frank M.J., Levinson G.E. An index of the contractile state of the myocardium in man. -J.Clin.Invest., 1968, v.47, p.1615
  74. Hamilton W.F. The physiology of the cardiac output. -Circulation, 1953, v.8, p.527
  75. Hamilton W.F., Riley R.L. Comparison of the Fick and dye-dilution method of measurement the cardiac output in man. -Amer.J. Physiol., 1948, v.153, p.309
  76. Kubicek W.G., Patterson R.P.,Witsoe D.A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. -Ann.N.Y.Acad. Sci., 1970, v.170, p.724.
  77. Landry A.B.,Goodyex A.V.N. Hate of rise left ventricular pressure. Indirect measurement and physiologic significance. -Acer. J.Cardiol., 1965, v.15, p.660.
  78. Levine H.J., McIntyre K.M., Lipana J.G., Qing O.H.L. Force-velocity relations in failing and nonfailing hearts of subjects with aortic stenosis. -Amer.J.Med.Sci., 1970, v.259, P.79
  79. Mason D.T. Usefulness and limitation of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of iqyocardial contractility in man. -Amer.J.Cardiol., 1969, v.23, P.516
  80. Mason D.T., Spann J.F., Zelis R. Quantification of the contractile state of the intact human heat. -Amer.J.Cardiol., 1970, v.26, p. 248
  81. Riva-Rocci S. Un nuovo sfigmomanometro. -Gas.Med.di Turino, 1896, v.50, №51, s.981.
  82. Ross J., Sobel В.E. Regulation of cardiac contraction. -Amer. Rev.Physiol., 1972, v.34, p.47
  83. Sakai A.,Iwasaka T., Tauda N. et al. Evaluation of the determination by impedance cardiography. -Soi et Techn.Biomed., 1976, NI, p.104
  84. Sarnoff S.J.,Mitchell J.H. The regulation of the performence of the heart. -Amer.J.Med.,1961, v.30, p.747
  85. Siegel J.H., Sonnenblick E.Н. Isometric Time-tension relationship as an index of ocardial contractility. -Girculat.Res., 1963, v.12, р.597
  86. Starr J. Studies made by simulating systole at necropsy. -Circulation, 1954, v.9, p.648
  87. Veragut P., Krayenbuhl H.P. Estimation and quantification of myocardial contractility in the closed-chest dog. -Cardiologia (Basel), 1965, v.47, № 2, p.96
  88. Wezler K., Böger A. Der Feststellung und Beurteilung der Flastizitat zentraler und peripherer Arterien am Lebenden. -Schmied.Arch., 1936, Bd.180, S.381.
  89. Wezler K., Böger A. Über einen Weg zur Bestimmung des absoluten Schlagvolumens der Herzens beim Menschen auf Grund der Windkesseltheorie und seine experimentalle Prafung. -N.Schmied. Arch., 1937, Bd.184, S.482.

Источник: bono-esse.ru

Основной функцией сосудов кровеносного русла является обеспечение непрерывного движения крови и необходимого уровня кровоснабжения органов. Это достигается совокупностью частных функций отдельных сосудов.
Функционально сосуды подразделяются на следующие группы:
1) упруго-растяжимые (амортизирующие) сосуды;
2) резистивные (resistere, лат. – сопротивляться) сосуды;
3) обменные сосуды;
4) шунтирующие сосуды;
5) ёмкостные сосуды.
К упруго-растяжимым сосудам относят аорту и крупные артерии (сонные, подвздошные и др.), образующие компрессионную камеру, т.к. они обеспечивают непрерывный ток крови, поступающей в эти сосуды порциями во время систолы желудочков. По строению эти сосуды являются сосудами эластического типа (в стенке преобладают эластические элементы). Они запасают энергию, переданную сердечной мышцей во время систолы, в форме потенциальной энергии растянутой стенки для обеспечения движения крови во время диастолы желудочков. Когда давление крови в аорте снижается, её стенки под действием эластических сил возвращаются в исходное положение, проталкивая кровь из сосуда по направлению к капиллярам. При этом потенциальная энергия снова переходит в кинетическую энергию продвижения крови.
Концевые (средние, мелкие) артерии и, особенно, артериолы называют резистивными сосудами (или сосудами сопротивления). Это сосуды мышечного типа. В их стенке выражена средняя (мышечная) оболочка – медиа. В артериолах создаётся большое сопротивление току крови, поступающему из компрессионной камеры. Благодаря этому также обеспечивается непрерывность движения крови по кровеносному руслу. Просвет артериол может меняться. Изменение просвета артериол является главным регулятором общего (системного) артериального давления. И.М.Сеченов назвал артериолы «кранами сердечно-сосудистой системы». Увеличение просвета артериол улучшает местное кровообращение, а их закрытие – наоборот. Таким образом, артериолы выполняют следующие две функции: регуляция уровня системного артериального давления, регуляция местного (органного) кровообращения.
К обменным сосудам относятся капилляры, обеспечивающие обмен газов и других веществ между кровью и тканевой жидкостью. Фильтрация через капилляры составляет 20 л/сут, реабсорбция – 18 л/сут, а через лимфатические капилляры – 2 л/сут. Этой функции капилляров способствуют следующие факторы:
1) большая сеть капилляров (длина 1 капилляра составляет 0,5-1,1 мм, длина капиллярного русла – 100 тыс. км, количество капилляров равняется примерно 40 млрд);
2) самая маленькая линейная скорость движения крови – 0,5 мм/с (эритроцит в капилляре находится около 1 с);
3) однослойное строение стенки капилляров (эндотелий на тонкой базальной мембране);
4) диаметр капилляров равен приблизительно диаметру эритроцитов, что улучшает газообмен.
К шунтирующим сосудам относятся сосуды, соединяющие артериолы и венулы, главной функцией которых является сброс крови из артериальной в венозную систему, минуя капилляры (артериоло-венулярные анастомозы, артерио-венозные шунты). Они не участвуют в обмене веществ между кровью и тканями и в обычных условиях они закрыты. Роль этих анастамозов заключается в следующем:
1) изменение объёмной скорости кровотока в органе;
2) регуляция регионарного и системного артериального давления;
3) сброс крови из кровяного депо в общую циркуляцию;
4) оксигенация венозной крови (в небольшой степени).
К ёмкостным сосудам относятся вены, т.к. вследствие большой растяжимости и низкой эластичности их стенок они могут вмещать значительные (70-80 %) объёмы крови (за исключением венозной системы мозга, не выполняющей ёмкостной функции). В органах – кровяных депо (печени, селезёнке, лёгких, подкожной клетчатке) кровь находится, главным образом, в венах, которые образуют здесь синусы и лакуны.
К факторам, способствующим движению крови по венам, относятся:
1) градиент давления между аортой и центральными полыми венами;
2) работа клапанов большинства вен (за исключением мелких, воротной и полых вен);
3) сокращение скелетных мышц, проталкивающих кровь в венах, расположенных между мышцами (мышечный насос);
4) сокращение диафрагмы во время вдоха, через которую проходит нижняя полая вена (присасывающе-сдавливающий насос);
5) присасывающее действие грудной клетки во время вдоха, поскольку в грудной полости Р < Ратм, а в брюшной Р > Ратм (дыхательный насос). Давление в венах, находящихся в грудной полости, во время вдоха является отрицательным, т.е. ниже атмосферного.

Микроциркуляция – это движение крови по сосудам микроциркуляторного русла, к которым относятся:
1) артериолы (Ø 100-30 мкм);
2) метаартериолы (Ø 30-15 мкм);
3) прекапиллярный сфинктер (Ø 5 мкм);
4) прекапилляры (Ø 15-10 мкм);
5) капилляры (Ø 10-2 мкм);
6) посткапиллярные венулы (Ø 15-20 мкм);
7) венулы (Ø 20-75 мкм).
В стенках капилляров отсутствуют миоциты, которые могли бы активно изменить их просвет. Поэтому основную функцию регуляции кровотока через них выполняют артериолы, метаартериолы, поткапиллярные венулы и артериовенозные шунты. Артериолы содержат в своей стенке относительно большое количество гладкомышечных волокон, которые лежат в один слой. В местах перехода артериол в капиляры миоциты встречаются реже и в конце концов в капиллярах исчезают полностью. В стенках артериол имеются чувствительные и двигательные нервные окончания, за счёт которых осуществляется нервно-рефлекторная регуляция их просвета. Миоциты и нервные окончания появляются опять в венулах.
Наибольшее значение среди этих сосудов имеют капилляры, так как они находятся в межклеточных пространствах и тесно соприкасаются с клетками органов. Стенка капилляров состоит из одного слоя эндотелиальных клеток. Эндотелиоциты в капиллярах, как и в других отделах сосудистого русла, являются активными элементами сосудистой стенки. В них синтезируются различные ферменты и биологически активные соединения, например, эндотелиальный фактор расслабления (ЭФР), антитромбин III. Эти и другие факторы активируют или тормозят действие на сосудистую стенку гормонов, медиаторов и факторов тромбообразования. Также обнаружено, что в некоторых случаях эндотелиоциты могут сокращаться и из плоских становиться объёмными.
Кроме этого просвет капилляра зависит от следующих особенностей кровотока в нём:
1) по мере уменьшения диаметра сосуда микроциркуляторного русла соотношение между форменными элементами крови и плазмой снижается;
2) феномен Фореуса-Линдквиста: при уменьшении диаметра сосуда текучесть крови (показатель, обратный вязкости) растёт.
Феномен Фореуса-Линдквиста характерен для крови, которая является неньютоновской жидкостью. Эффект снижения вязкости создаётся за счёт наличия в крови форменных элементов. В основе этого феномена лежит особенность движения самих эритроцитов. Эритроциты в сосудах с небольшим диаметром выстраиваются друг за другом, объединяясь в отдельные группы, в которых клетки разделены порциями плазмы. Эта плазма находится в неподвижном состоянии и выключается из межслоевого трения, уменьшая его. Плазма, находящаяся около стенок сосуда, является смазкой для движения эритроцитов. При этом в силу эластичности мембраны эритроцит может проходить через капилляры диаметром меньше самого эритроцита, меняя свою форму, или перекатываясь.
Благодаря несжимаемости своего содержимого, эритроциты образуют зону повышенного давления в той части плазмы, которая находится между ним и стенкой капилляра. Это повышенное давление удерживает капилляр в расправленном состоянии. По мере уменьшения концентрации эритроцитов это влияние снижается. При исчезновении из кровотока эритроцитов (плазматические капилляры) веномен Фореуса-Линдквиста ликвидируется.
Капилляры являются обменными сосудами, через их стенку происходит обмен между плазмой крови с растворёнными в ней газами и питательными веществами и тканевой жидкостью. Чем интенсивнее обмен веществ в ткани, тем больше в ней содержится капилляров.
Сосудистый модуль – это структурная и функциональная единица кровотока в мелких сосудах, представляющая из себя обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определённую клеточную популляцию.
Закономерности транскапиллярного обмена описал Старлинг. Основной силой, осуществляющей фильтрацию в артериальном конце капилляра, является гидростатическое давление крови, а основной силой реабсорбции жидкости в венозном конце капилляра является онкотическое давление. Закономерность транскапиллярного обмена может быть выражена формулой:


где V – объём жидкости, проходящий через стенку капилляра за 1 минуту;
РГК – гидростатическое давление крови;
РОТ – онкотическое давление тканевой жидкости;
РГТ – гидростатическое давление тканевой жидкости;
РОК – онкотическое давление плазмы;
К – коэффициент фильтрации.

В артериальном конце капилляра объём жидкости, прошедшей через его стенку, положителен, т.е. жидкость уходит в ткань. В венозном конце капилляра объём жидкости, прошедшей через его стенку, отрицателен, так как жидкость из ткани уходит в кровь.
Различают два вида функционирующих капилляров:
1) магистральные капилляры, которые образуют кратчайший путь между артериолами и венулами;
2) сетевые капилляры – это параллельно соединённые с магистральным капилляром боковые ответвления.
Большинство капилляров в покое выключено из кровообращения, а кровь течёт только по дежурным капиллярам. Встречаются капилляры, содержащие только плазму. Такие плазматические капилляры являются переходными от функционирующих к нефункционирующим капиллярам. В период деятельности любого органа количество функционирующих капилляров возрастает. Регуляция капиллярного кровообращения осуществляется опосредованно через влияние на артерии и артериолы. Общий кровоток через капилляры определяется сокращением миоцитов артериол и метаартериол, а количество крови, которое пройдёт через истинные капилляры определяется степенью сокращения прекапиллярных сфинктеров. Расслабление миоцитов артериол, метаартериол и сфинктеров интенсифицирует кровоток и повышает давление в устье капилляров, которые пассивно открываются. Сокращение этих миоцитов уменьшает кровоток и капилляры закрываются.
Характерной особенностью микроциркуляции является эффект критического давления закрытия в артериолах: при падении давления ниже 20 мм рт. ст. артериолы спадаются, и кровь в капилляры не поступает.
Просвет капилляров также зависит от активной функции эндотелиоцитов, которые содержат микрофибриллы, состоящие из актиновых, миозиновых и других сократительных элементов, которые расположены вдоль основания клеток и прикрепляются к цитолемме в области межклеточных контактов. Сокращение микрофибрилл может приводить к двум эффектам:
1) расхождение эндотелиоцитов и увеличение межклеточной щели;
2) изменение формы эндотелиоцита и его выпячивание в просвет капилляра.
Конкретный результат определяется давлением крови на стенку капилляра. Если оно большое, то ширина межклеточной щели увеличивается, а если малое, то просвет капилляра закрывается.
В регуляции микроциркуляции также играют роль шунтирующие сосуды, которые непосредственно соединяют артериолы и венулы. Если они открыты, то кровь поступает в венозную систему, минуя капилляры. Это бывает, например, при понижении ниже 150 температуры внешней среды, что имеет большое значение для терморегуляции.
Под контролем бинокулярного микроскопа можно прямым методом измерить давление в капилляре: в артериальном конце в среднем оно равно 32 мм рт.ст., а в венозном – 15 мм рт. ст. Однако в капиллярах различных органов это давление может колебаться в пределах 6-70 мм рт. ст. (в почечных клубочках – 70 мм рт. ст., в капиллярах лёгких – 6 мм рт. ст.). Физиологию микроциркуляции изучают с помощью микрокиносъёмки.

Кровяное давление – это давление крови на стенки сосудов. Давление крови в артериях называется артериальным давлением.
Давление крови в аорте во время систолы левого желудочка называется систолическим (Рс = 110-130 мм рт. ст.), во время диастолы – диастолическим (Рд = 70-85 мм рт. ст.).
Пульсовое давление – это разность между систолическим и диастолическим давлением крови (Рп = 40-45 мм).
Среднее гемодинамическое давление – это давление, при котором в отсутствие пульсовых колебаний создаётся такой же гемодинамический эффект, как и при пульсирующем давлении. Среднее давление можно измерить в эксперименте по методу И.М.Сеченова (с помощью манометра Людвига с суженным коленом). Его также можно рассчитать по формуле:


В среднем среднее гемодинамическое давление равно 100 мм рт. ст.
Кроме артериального давления различают давление в капиллярах (капиллярное давление) и давление в венах (венозное давление).
Кровяное давление складавается из гидродинамического и гидростатического давлений. Сокращение сердца создаёт гидродинамическое давление. Действие сил гравитации на кровь в кровеносных сосудах создаёт гидростатическое давление, которое меняется при изменении положения тела в пространстве. При этом уровень сердца является нулевым уровнем отсчёта. В сосудах, расположенных выше сердца, кровяное давление представляет собой разность гидродинамического и гидростатического давлений. В сосудах, расположенных ниже сердца, гидростатическое и гидродинамическое давления суммируются.
Влияние гидростатического давления создаёт предпосылки для возможных нарушений кровотока. У человека с гипотонией при вертикальном положении в сосуды головного мозга кровь поступает под очень низким давлением. Это способствует нарушениям гемодинамики в этих сосудах и возникновению локальной гипоксии ткани мозга. В сосудах нижних конечностей при затруднении оттока крови (беременность, длительное вертикальное положение и т.п.) повышается кровяное давление, что способствует развитию варикозного расширения вен (из-за особенностей строения их стенки). Варикозные расширения вен возникают в зонах расположения их клапанов.
Главными факторами, влияющими на величину кровяного давления, являются:
1) работа сердца;
2) общее периферическое сопротивление, определяемое главным образом тонусом артериол;
3) объём циркулирующей крови;
4) вязкость крови.

Если:


то при Рв = 0:


где R – общее периферическое сопротивление (сосудистый компонент),
Q – минутный объём крови для большого круга кровообращения (сердечный компонент).

Сердечный компонент давления зависит от частоты и силы сердечных сокращений, а сосудистый компонент – от тонуса резистивных сосудов. Общее периферическое сопротивление выражают в абсолютных физических величинах (дин/см2 – в системе СИ).
Количество крови, протекающей по лёгочному кругу кровообращения равно количеству крови, протекающей по большому кругу кровообращения.
Распределение давления в разных отделах сосудистого русла показано на рис.27.

Главным фактором, определяющим уровень давления крови в сосудах, является периферическое сопротивление. Точно определить сопротивление сосудов невозможно вследствие изменения тонуса их гладких мышц. Вязкость крови также изменяется в сосудах разного диаметра. Например, в сосуде диаметром меньше 1 мм вязкость крови уменьшается. Это связано с тем, что пристеночный слой крови представляет собой плазму, вязкость которой значительно меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть его поперечного сечения занимает плазма, что уменьшает общую величину вязкости.
Теоретически можно предположить, что наибольшим сопротивлением обладают капилляры. Однако капилляры включены в сосудистую сеть параллельно, поэтому их суммарное сопротивление меньше, чем таковое у артериол. Кроме того, в капиллярах меньше линейная скорость кровотока, чем в артериолах, которые значительно длиннее капилляров. По этим трём причинам основное сопротивление току крови (50%) возникает в артериолах. 25% общего периферического сопротивления приходится на капилляры, остальные 25% составляет сопротивление артерий, венул и вен.

Определение величины кровяного давления.
Кровяное давление определяют двумя способами: прямым (кровавым) путём, используемым в экспериментах на животных, и косвенным (бескровным) путём, применяемым у человека. Впервые измерение артериального давления прямым путём было проведено на лошади Хелсом в 1733 г.
К бескровным методам определения кровяного давления относятся пальпаторный метод Рива-Роччи (итальянского врача-педиатра, 1895) и аускультативый метод Н.С.Короткова (русского врача, 1905).
Наиболее распространённым в клинике является метод Короткова, при котором проводят выслушивание звуков (тонов Короткова) в локтевой ямке на локтевом артерии. Первый тон Короткова появляется при давлении в наложенной на плечо манжетке равном систолическому. Исчезают звуки (второй тон Короткова) при давлении в манжетке, равном диастолическому. Показатели давления, полученные этим способом, отличаются от полученных при прямом измерении на ± 10 мм рт. ст.

Артериальный пульс – это ритмические колебания стенки артерии, обусловленные повышением давления в период систолы.
Различают центральный пульс (это пульс аорты и крупных отходящих от неё артерий – сонной, подключичной, подзвздошной) и периферический пульс (это пульс периферических артерий). Пульсовая волна вызывается волной повышения давления, возникающей в аорте в момент изгнания крови. В это время давление в аорте резко повышается и стенка её растягивается. Колебания сосудистой стенки, вызванные этим растяжением, распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет. Скорость распространения пульсовой волны в аорте равна 5 – 8 м/с, а в периферических артериях – 6 – 9,5 м/с. С возрастом при снижении эластичности сосудов, а также при атеросклерозе артерий скорость распространения пульсовой волны увеличивается.
Пульс можно легко пропальпировать на любой доступной для пальпации артерии: лучевой, сонной, височной, подколенной, наружной артерии стопы и др. При простой пальпации поверхностных артерий можно получить важные предварительные сведения о состоянии сердца и сосудов. При этом оцениваются следующие параметры:
1) частота (редкий, нормальный или частый пульс);
2) ритмичность (ритмичный или аритмичный пульс);
3) наполнение, или высота (высокий или низкий пульс);
4) скорость (быстрый или медленный пульс);
5) напряжение (твёрдый или мягкий пульс).
У детей пульс в покое чаще, чем у взрослых. У спортсменов пульс редкий. Ускорение пульса наблюдается при эмоциональном возбуждении, физической нагрузке, при повышении температуры тела и некоторых заболеваниях сердца. При максимальной нагрузке частота пульса может возрастать до 250 ударов в минуту и более.
Частота пульса колеблется в соответствии с ритмом дыхания: на вдохе пульс учащается, на выдохе – урежается. Это физиологическая дыхательная аритмия, которая чаще встречается у молодых людей и у лиц с лабильной автономной нервной системой. Другие виды аритмии (экстрасистолия, мерцательная аритмия и пр.) являются патологическими и диагностируются с помощью ЭКГ.
Амплитуда пульса зависит от ударного объёма крови и объёмной скорости кровотока в диастоле. Наполнение пульса снижается при кровопотерях и обезвоживании организма. На неё также влияет эластичность компрессионной камеры: амплитуда пульса тем меньше, чем больше эластичность компрессионной камеры.
Скорость пульсовой волны зависит от градиента давления: быстрое изменение давления сопровождается быстрым пульсом.
Напряжение пульса зависит от систолического артериального давления, так как этот параметр пульса определяют по силе, которую необходимо приложить для того, чтобы пульс под пальцами врача исчез. Чем больше напряжение пульса, тем больше систолическое давление.
Кривая записи пульса называется сфигмограммой (sphygmos, гр. – биение сердца; + grapho, гр. – пишу) (рис.28).
Центральный пульс имеет восходящую часть, которая называется анакротой (ana, гр. – вверх; + krota, гр. – линия). Этот крутой подъём на сфигмограмме связан с резким повышением артериального давления и растяжением аорты в результате сердечного выброса. Катакрота (kata, гр. – вниз; + krota, гр. – линия) – это нисходящая часть сфигмограммы, возникающая при снижении артериального давления. На катакроте имеется дикротический зубец – дикрота (di, гр. – второй; + krota, гр. – линия), который обусловлен вторичным повышением артериального давления, связанным с отражением крови от аортальных клапанов во время протодиастолического интервала (отражённая волна). На сфигмограмме центрального пульса есть два предварительных колебания:
1) а-зубец возникает во время фазы изометрического сокращения и связан с ударом крови при повышении давления в левом желудочке в створки митрального клапана, что передаётся на стенку аорты и распространяется до крупных сосудов;
2) i-зубец возникает в начале фазы быстрого изгнания и связан с выбуханием створок полулунных клапанов в аорту.
Сфигмограмма периферического пульса имеет более пологую анакроту и в ней отсутствуют два предварительных колебания. При этом сохраняются катакрота и дикротический зубец.

Пульсовые колебания крови в мелких и средних венах отсутствуют. В венах, находящихся вблизи сердца, имеются пульсовые колебания, которые называются венным пульсом, но происхождение их совершенно иное, чем у артериального пульса. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. В это время венозное давление повышается и стенки вен колеблются.
Запись кривой венного пульса называют флебограммой (phlebos, гр. – вена; + grapho, гр. – пишу) (рис.29). Обычно записывают венный пульс яремной вены. На флебограмме различают три зубца: a, c, v.

Зубец a (от atrium) обусловлен систолой правого предсердия, а именно при этой систоле устья полых вен сжимаются кольцом мышечных волокон, вследствие чего приток крови из вен в предсердия приостанавливается. Зубец с (от carotis) вызван толчком пульсирующей сонной артерии, передающимся на находящуюся рядом яремную вену. Зубец v (от ventriculus) обусловлен тем, что в конце систолы желудочков предсердия уже заполнены кровью и дальнейшее поступление крови невозможно. Этот застой крови в венах вызывает растяжение их стенок.

Источник: do2.vsmu.by


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.